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INTRODUCTION.

IN a paper “On the c¢- and p-Discriminants of Ordinary Integrable Differential
Equations of the First Order,” published in vol. 19 of the ¢ Proceedings of the London

Mathematical Society,” the factors which occur in the c-discriminant of an equation of

the form f(x, y, ¢) = 0, where f(x, ¥, ¢) is a rational integral function of z, ¥, ¢,
are determined analytically.

It is shown™ that if E = 0 be the equation of the envelope locus of the curves
S(x,y,¢) = 0; if N = 0 be the equation of their node-locus ; if C = 0 be the equation
of their cusp-locus, then the factors of the discriminant are E, N2, (3.

The singularities considered are those whose forms depend on the terms of the
second degree only, when the origin of coordinates is at the singular point.

The object of this paper is to extend these results to surfaces.

It is well known that if the equation of a system of surfaces contain arbitrary
parameters, and if a locus of ultimate intersections exist, then there cunnot be more
than two independent parameters.

Hence the investigation falls naturally into two parts: the first is the case where
there is only one independent parameter, and the secend is the case where there
are two. '

The investigation given in this paper is limited to the case in which the equation is
rational and integral, both as regards the coordinates and the parameters.t

* The theorem was originally given by Professor Caviey in the ¢ Messenger of Mathematics,” vol. 2,
1872, pp. 6-12.
t An abstract of the contents of this paper has been printed in the Proceedings, vol, 50, pp. 180-186.
A table of contents will be found below, pp. 274-278.
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142 PROFESSOR M. J. M. HILL ON THE LOCUS Ok SINGULAR POINTS

PART IL-THE EQUATION OF THE SYSTEM OF SURFACES IS A RATIONAL INTEGRAL
FUNCTION OF THE COORDINATES AND ONE ARBITRARY PARAMETER,

SecrioN 1. (Arts. 1--6).—Tor ¥ACTORS OF THE DISCRIMINANT WHICH IN GENERAL
CORRESPOND T0 ENVELOPE AND SINGULAR LiNe Locr

Art. L—T0 show that if K = 0 be the equation of the Envelope Locus, the Discrimi-
nant contaans ¥ as a factor.

Let the equation be
S, y,2,0)=0. . . . . . . . .« . (1),

where @, y, 2 are the coordinates, @ the parameter, and f is supposed to be a rational
integral function of x, ¥, z, a.

Denoting partial differentiation when w, y, 2, a are treated as independent variables
by D, the locus of ultimate intersections can be obtained by eliminating a between
(1) and

Df (x,y,2a)
)

Let the roots of (2) treated as an equation in a be @, a,, . . ., which will at first
be supposed to be all different, so that they do not make

V@ gz
Da? -

Then if R be a factor introduced to make the discriminant A, obtained by
eliminating & between (1) and (2) of the proper order and weight,

A= Rf(w, Y% Ol)f(fﬂ, Y % 062) e (3)

Let @ = ¢, y = n, 2 = {satisfy (1) and (2) when ¢ = a.
Suppose that ¢, becomes a, when w = & y =19, 2= {,

therefore,
FEnLe)=0 . . oo (4
D o
L

Now in A put @ = & y =1, # = {; and consequently o, = «, therefore f(x, y, 2, a,)
becomes f(€, 7, {, &) and consequently vanishes,

Therefore A vanishes when x = § y =, 2 =,

The next step is to show that the locus of ultimate intersections is the envelope.

Write, for brevity, »
A=Qf &y, za0)=Qf . . . . . . . . (6).
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Now denoting differentiation when @, y, z are the only independent variables by 0,
aA D Df, oa
o 4f1+ Q< = Do, 1)

Hence, since ¢ = «, satisfies (2)

aA Df,

assuming that Dfj/Da, da,/0x vanishes when Df,/Da, vanishes.
Now when = &, y = 7, 2 = {, f; = 0, therefore

0A [~ Dflo=¢
5;_[QMJZJ N )

Hence when x = ¢, y =1, 2=

A /Df, _ 0A /Df, _ 0A /DA

/D =y Dy T s o )
Now the tangent plane to the surface
Sy ze)=0. . . . . . . . . . (10)
at the point x = €&, y =, 2 = { is
D D D
(X —§); f+(Y ") 1o f +(Z z:)-ﬁlgzo, CoLoL L (1)

Now Df/D¢ stands for Df(x, v, #, )/Da, when x = § y =1, 2={ And the
value of Df,/Du, i.c., Df (x, v, 2, a,)/Dx, when « = ¢, y = v, z = {, and, therefore,
a; = e is the same as the value of Df(w, v, 2, o)/Dx, when x = &,y = », z = (.

This may be expressed thus :-—

0A Iy _ 0A /Df _ 0A /1
Ot/ DE ™ 0/ Dy~ 8¢/ D¢

Hence the tangent planes to the surfaces A = 0, f (%, ¥, 2, &) = 0 at the point
& m, { coincide.

This proves the envelope property in general for the locus of ultimate inter-
sections.

Hence A vanishes, if in it «, y, z be made respectively equal to & 7, {, the coordi-
nates of any point on the envelope-locus,

Therefore A contains E as a factor.
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But the conclusion fails if

Dr o
DE 0; Dy 0,

Dy

m,.—_o.......(liz).

Hence the work itself suggests the examination of this exceptional case, v.e., where
a locus of singular points or lines exists,

Example 1.— Envelope Locus.

Let the surfaces be
[f(x, 9, 2) — af + x (%, y, 2) = 0.

(A.) The Discriminant.

The discriminant is found by eliminating o between the above equation, and

—2[¢(x, 9, 2) — a] = 0.

Hence the discriminant is x («, ¥, 2).
Hence tlie locus of ultimate intersections is

X (@, 9,%) = 0.
(B.) The envelope locus vs x (x, y, z) = 0.

For let & m, { be any point on x (x, y, 2) = 0.
Let o = ¢ (& 7, {), and consider the single surface

[ (2,9, 2) = d(&n OF + x(,9,2) = 0.

Puta=6+X,y=n0+Y, 2=+ Z
Then the lowest terms in X, Y, Z are

A
X@x+yﬁx+z%,
af n

Hence the surface considered touches y (x, y, z) = 0 at £ 7, &
Hence x (x, v, z) = 0 is the envelope.
It touches the surface at every point of the curve

X(mﬂ Y, Z) = O;
b (z, 9, 2) = ¢ (£ . L).

Hence this curve is the characteristic.
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Art. 2.—T0 prove that the Locus of Conic Nodes of the Surfaces f(x, vy, z, @) = 0 is
a Curve, not a Surface.

At every point of the locus of conic nodes the equations

Sz, y,2,0) =0 . . . coe .. (18),

Df (. y, 2 a) _

.2 0 . . ... (1),
Df (@ y, @ a) _

o =0 . . . . . . ... (15,
Df(m,?/;zaa)

are simultaneously satisfied.

In general these are satisfied by a finite number of values of «, ¥, z, @ only. Hence
there are only a finite number of conic nodes.

The next case is that in which equations (13)—(16) are equivalent to three indepen-
dent equations only, and then it is possible to satisfy them by relations of the form

v=¢ @), y=1(a), z=x(a) . . . . . . (17).

In this case there is a curve locus of conic nodes. But as such a locus is defined
by two equations, it cannot be determined by equating a factor of the discriminant
to zero.

The next case is that in which equations (13)—-(16) are equivalent to two indepen-
dent equations only. Eliminating « between these, the equation of a surface is
obtained. This is the case which will be further examined, and it will be shown that
the tangent cone at every conic node must break up into two planes, i.e., the conic
node becomes a binode.*™

Let & 7,  be the conic node on the surface (10).

Let & 4+ 8¢, n + 0, { + 6 be the conic node on the consecutive surface

J@y zae+8)y=0. . . . . . . . . (18).
Then

FEDRLa=0. . . . . . ... (19),

Df (g, &«

*i(—gﬁz:#)zo. Coe e e e (20),

% In this connection may be noticed Art. 11, in which it is proved that if a surface have upon it a
live at every point of which there is a conic node, then the tangent cone at every conic node must break
up into two planes so that the line is a binodal line.

MDCCCXCIL.—A. U
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Drgn &§a) ,
T =0. . . . . . . < . . . (Z]),
Df(Emn & a)

Dt =0. . . . . .o, (22),

and the equations obtained from (19)-(22) by changing & », {, a into & + 8¢, n 4+ &y,
{ -+ 8, & 4 Sa respectively.

Denoting differential coefficients by brackets containing the independent variables,
with regard to which the differentiations are performed, these last equations become
by means of (19)-(22)

(] (Sa) = 0. . . . . . . . . . . (23),
(& €] B+ [En] Bn) +[6 @) +[Ea]B)=0 . . . (29),
[n, €1 (8€) + [0, m] (89) + [, L (30) + [m, a] Ga)=0 . . . (25),
(£ €1 (88) -+ [ ] (3 +[E L]0 + [§ 2] B) =0 . . . (26).
By (23),
[a] =0

at every point of the conic node locus. Hence the co-ordinates of every point on the
conic node locus satisfy the equation of the locus of ultimate intersections.*

Further, since [«] = 0 at every point on the conic node locus, the corresponding
equation is satisfied at the conic node on the surface (18).

Hence

[a, €] (8&) + [o, ] (8n) + [«, L] (80) + [@, @] (do) = 0 . . . (27).

Since equations (24)-(27) must give consistent values for &¢: 8y : S : Sat, it follows
that the Jacobian

D{[E] [n], (&) [«]} __ 28)
D{En £ el =0. . . . . . . . . (28)

# T am indebted to Dr. Forsyrr for the following example :—
Let the surfaces be

(x—a)?+ (y —a)? — 2z — a)?= 0.
The discriminant is

@2 — 2 — ) + (P —2) (2 —y)*
Hence the locus of ultimate intersections consists of the two planes

(2 —x—1y) =+ V2— Pz —1y).

These planes intersect in the straight line » = y = #, which is the locus of conical poiunts of the
surfaces.
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If this were the only relation between these equations, they would determine the
ratios 8¢ : 8n : 8¢ : Seu.

Hence there would be a curve locus, not a surface locus of conic nodes.

If, then, there be a surface locus, equations (24)-(27) must be equivalent to two
independent equations only.

Expressing that (24)—(26) are equivalent to two independent equations only, it
follows that

D {[£] [1], [¢]} _
DlEr =0 e (29)

But this is the condition that the tangent cone at the conic node should break up
wmto two planes, and then the conic node becomes a binode.

Hence there cannot be a surface locus of conic nodes, unless the conic nodes become
binodes. ,

Since equations (18)—(16) are equivalent to two independent equations only, every
point on the intersection of the surfaces represented by (13) and (14) is a binode on
the surface (13).

Hence the surface (18) has a binodal line.

The locus of these binodal lines is a surface at every point of which equations (1)
and (2) are satisfied, hence it is a part of the locus of ultimate intersections, and its
equation can be determined by equating a factor of the discriminant to zero.

Art. 3.—To find the condutrons which hold at every point on o Surface Locus of
Binodal Lines.

In this case (29) holds.
Hence, in order that (24)—(26) may give finite values for 8¢ : 8n : 6( : da,

D {[€), [=]). [£]}

D g n, a} =0= D i£, » &} Coe oo (30),
D{[&. ] [ _  _ DAL (€] [+1}
D& & a} =0= D& &} Coe oo (3D,

D {[f]»_[ﬂ]_»léj} —0 = P {["7]’ [é‘]’ [“]}
Di{n & a} D {&n, &

(32).

Now (80) shows that (27) depends on (24) and (25). Hence, in this case, the four
equations (24-27) are equivalent to two independent equations only, which is obvious
since (13-16) are equivalent to two independent equations only.

U 2
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Art. 4.—To find the conditions which hold at every point on o Surface Locus of
Unodal Lines.

At such a point the tangent cone, whose equation is

(& E](X = &P + [ (Y — »)* +[L T(Z — L)
2, EJ(Y =) (Z =)+ 2[L €] (Z— O (X = &)+ 2[£ (X =) (Y —n)=0(33),

breaks up into two coincident planes.
Hence
(& €] :[&m] - [& 2]
=[n, &l (9] [, L]
=[4 &V [Lm] 1L - o o o o (84).

Of the four equations (24)—(27), which are satisfied when there is a surface locus of
binodal lines, it has already been shown that only two are independent. The same
equations hold when there is a locus ot unodal lines.

Multiply (24) by [7, £], (25) by [£, €], subtract and use (34). Then,

F (59) {[n €116, o] — [& El[mal} =0 . . . . . . (35),
therefore,

[0, ][ el —[& &l [me]=0 . . . . . . . (36).
Similarly

[Le]lE el =& el [Lal=0 . . . . . . . (37)

By (34) and (36) it follows that (25) depends on (24).

By (34) and (37) it follows that (26) depends on (24).

By (34), (36), (37), it follows that, if the values of 8&: 6n : 80 : 8a satisfying
(24)—(27) are finite, then (27) depends on (24), and the following ratios hold :—

L& &1:[&m]:[€ L] :[& =]
= [, &]:[n,m]:[n, &1 [, ]
=L &) L] (L L] [ o]
=, &| [, n] [, (][] o . o . . . . (38).

In this case, then, (24)-(27) are equivalent to one independent equation ouly.
It may be noticed that in the case in which

[a,ﬂ:(), [:OL")’)JT-:O’ fa,}é:;()« L (39)’
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in order that (27) may be satisfied,
[a,0]=0. . . . . . . . . . . (40).

And now (27) becomes an identical equation. It does not depend on (24).

Art. 5.—Examination of the Discriminant A, and s Differentral Coefficients, when o
Surface Locus of Binodal Lines exists.  Proof that A contains B* as a factor.

Let &, », { be a point on the binodal line on the surface (10).
Then when x = &, y =9, 2 =

3

c_ o PA_
Si=0, Dx—o'

Hence by (6) and (7), when x = &, y = 9, 2 = {,

A =0, %{% = 0.
Similarly
oA oA

Hence if B = 0 be the equation of the surface locus of binodal lines, A contains B?
as a factor.

Example 2.— Locus of Binodal Lines.
Let the surfaces be
[¢(z, y, 2) — P + x (2 9, 2) [ (2, y, )] = 0.

A. The Discriminant.

This is found by eliminating @ between the above, and

e LZgb(a?) Y, Z) —-oc_]: 0.

Hence the discriminant is x («, v, 2) [ (=, y, 2) P
Hence the locus of ultimate intersections is

x (@ 9, 2) [¥ (2 y,2)f =0

B. The Locus of Binodal Lines is i (z, y, z) = 0.
Let & 7, { be any point on the surface ¥ (x, ¥, 2) = 0.
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Take a = ¢ (& », {) and consider the single surface
(¢ (z, 9, 2) = $(& m, OF + x (% 9, 2) [¥ (% 9, 2)F = 0.
Putz=E+X,y=n+Y,2=0+ 2
Then the lowest terms in X, Y, Z are

o ool ]

This breaks up into two factors of the first degree in X, Y, Z
Hence & =, { is a binode on the surface considered. Now the only relation

satisfied by & u, {is (€ », {) = 0.
Hence any point &, %, {, on the surface ¥ (, y, z) = 0, is a binode on

(6@ y,2) = (& OF + x @y, 2) [ (= y, 2)F = 0.

Hence every point of intersection of the surfaces

Y (w, y, 2) =0,
and

(¢ (@ 9, 2) —af +x(wy, 2) [¥ (% y 2)f =

is a binode on the latter surface.

The equations of the binodal line of this surface are, therefore,

¥ (2, y,2) =0,
$(x, 9, 2) = a.

This accounts for the oceurrence of the factor [ (z, v, 2) P in A.

C. The Envelope Locus is x (x, y, z) = 0.
This may be proved as in Example 1.

Art. 6.— Examination of the Discriminant A, and its Differential Coefficients, when
a Surface Locus of Unodal Lines ewists. Proof that A contains U® as a factor.

Differentiating (7) with regard to « and ¥,

A L Q DA . Df, oa DY, DY, oa
o "“flaﬂ"' Oz ( 1+D01 3931>+Q<])5’i D"’ﬁalézl>¢

(41),
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*A 82Q 4+ 2QDA | DA dm) | 20 Df DY, | DY, da)
omdy =/ aa,a/ < + Da, 8y> + oy Da +Q <DmDy + Dz Da, oy ) - (42).

To find da,/0x, 0, /0y it is necessary to use the equation

Df (w’ :l/’ 4’ l)
T he (43).
This gives
D, DA _
Doba, Thagar =0 - - - - - (44),
DY, DYy day
Dypw T hab gy =0 - o (40)

Now reserving the case, according to the remarks in the Abstract (‘ Proc. Roy.
Soc., vol. 50, p. 180) and Art. 1, in which

DA
Da,? -

(46),

for further consideration, because, in this case, da,/0x, da,/dy, both become infinite or
indeterminate, it follows that

Oa, __ D, /D%
oz Dz Day/ Da? (47)’
ooy _ DY /D%
& = T DyDa/Dap - oo (48).
Hence
A 52@ 0 99 DA )Y, D¥, DY\ /DY,
oa® fl +2 or Dz + Q{Dyﬂ Da,? - <Dx Dal) }/ Dep = 7 (49),

PA _ FQ 9Q Bzﬁ_ 9Q Dfy o DYy D D /DY
oz dy afajj‘l + oz Dy ag/ Da + Q{Dny Da,? T De Da, DyDal}/ Dap " (50).

Hence, if & 7, { be a unode on the surface (10), and a, become equal to o when
x=§ y=mn, 2= { then by means of (38),
A A

2 T 0, oz Oy

whenz =¢ y=mn, 2=1_{

Similarly all the other second differential coefficients of A with regard to x, y, z
vanish when e = ¢, y =9, 2= {

Hence, if U = 0 be the equation of the surface locus of unodal lines, A contains U?®
as a factor.
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Example 3.—ZLocus of Unodal Lines.
Let the surfaces be
(¢ (= 9 2) —af +[x (% 9, 2) P =0.

(A.) The Discriminani.

The discriminant is found by eliminating a between the above and

- 2[(?5(90’ Y, Z)""OL]: 0.
Hence 1t 1s
[x (2, 9, 2) I
Hence the locus of ultimate intersections is

[x (z, 9, 2) P = 0.

(B.) The Locus of Unodal Lines is x (x, v, 2z) = 0.

Let & 7, { be any point on the locus x (z, ¥, z) = 0.
Let a = ¢ (& 7, {), and consider the single surface

[¢' (m: Y, Z) - 4) (5: s C)]Q + [X (:c, Y, z)]S = 0.

Puta=¢+X, y=n+Y, 2= {+ Z; then the lowest terms in X, Y, Z are

o | b, 0P
(Xa+ Yoy i)

Hence &, 5, { is a unode on the surface
[¢ (@ 9, 2) — (& OF + [x (2, 2)F =0.
Hence x (%, ¥, 2) = 0 is the locus of unodal lines on the surfaces
[ (@, 9, 2) — al + [x (@, y, 2)F = 0.

The unodal line on any one of the surfaces is given by the equations

X(w, Y, 2) =0,
LY, 2) = d.

-
=

This accounts for the occurrence of the factor [y (2, ¥, ) | in the discriminant.
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SecrioN IL (Arts. 7-9).—CoNsiDERATION oF THE CASES RESERVED IN WHICH TWO
ROOTS OF THE EQUATION Df/Da =0 BECOME EQUAL AT ANY POINT ON THE
Locus or ULTIMATE INTERSECTTONS.

Art. 7.—Consideration of the exceptional case of the Envelope Locus, in which two
consecutive characteristics covncide.

(A.) It will be shown that this is the case reserved in Art. 1, viz, where
D% /Da® = 0. The geometrical meaning of the condition will first of all be
determined.

The surface

Sy, 0) =0
intersects the surface

S y,2,0 + da) = 0,

where da 1s indefinitely small in the curve whose equations are

S, y,2,0) =0,
Df (z, v, @) —0.

This curve 1s called a characteristic. The equations of the nexi characteristic are
obtained by changing « into @ 4 8« in the above. Hence they are

S, y,2,0) 4 (S )Df(’b paa) _

D) | (50 DY ()
Da (8 ) Da? = 0.

Now, if the two consecutive characteristics coincide,

Df(& Y, 2, 0‘) Df('{} Y2, a_)
S@ypne)=0, TTpm==0, SR =0,

at every point of the coinciding characteristics,

Hence, the characteristic counts three times over as ap Interszction of the envelope
and the surface, instead of twice as in the ordinary case.

(B.) It is now necessary to repeat the investigation in the case in which equation
(2) has equal roots when @ := ¢, y =, z = {, the co-ordinates of a point on the locus
of ultimate intersections.

MDCCCXCIL A, X
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In this case, A may be written
B (@,0,50) f (@2 a) = RAfue o o . . . . (1)

where «,, a, are the roots of (2) which become equal when x =& y =19, z = {.

Therefore,
aA R Df, . Dfd Dfy | DA 2 ]
WAL RA G+ )+ RA(D e 5 - - ()

Now if it be assumed (see immediately below, under C) that the terms f, %‘;%ﬁl,
f1 sz vanish, then when o = ¢ y = 7, z = {, it follows that a, = a; = e, and,
therefore ,J1=0,/,=0, and %—2 = 0.

bmu]arly, ~ =0, %A 0.

Therefore, A contains E? as a factor.

(C.) Examination of the term f, D—Zl %%

Taking da,/0xz from (47) this term becomes

_ DR D o
® Da, Da,Dz/ Da?”
Now f'is of the form
Ae —ay) (0 — ay) (0 — a),

where a,, a,, a, all become equal to the same thing as a,, @y whenx =§ y=mn,2=1_
Hence, taking as infinitesimal of the first order the difference in the values of the
parameter a at the points & %, {and & 4+ 8& n + 8y, { + 8¢, it follows that f; is of
the third order of small quantities, Df;/Da, of the second, and D?f,/Da,? of the first.
Hence, assuming that D%,/Daq,Dx is not infinite, it follows that the term under
investigation is of the fourth order, and therefore vanishes ultimately.

Example 4.—Envelope Locus when two consecutive Characteristics coincide.

Let the surfaces be

¢ (2, y,2) + [Y (2, y,2) —af = 0.
(A). The Discriminant.

The discriminant is found by eliminating @ between the above and

— 3y (e, y,2) —af =0,
Hence it is [$ (2, y, 2) %



AND LINES IN THE INTERSECTIONS OF A SYSTEM OF SURFACES. 155

Hence the locus of ultimate intersections is
[¢ (2, 9,2)F = 0.

(B). The Envelope Locus such that two consecutive Characteristics coincide ts
¢ (x,y,2) = 0.

Let & », { be any point on ¢ (z, y, z) = 0.
Take a = ¢ (£, 9, {), and consider the single surface

¢ (@9 2) + [¥(z,9,2) =¥ (&9, OF = 0.

Pute=§¢64+ X, y=%4+Y,2= {4+ Z: then the lowest terms in X, Y, Z are

¢ ¢ o
Xoet Yo, T2

Hence the tangent plane to the surface at &7, { is also the tangent plane to

¢ (z,y,2) = 0.
Hence ¢ (x, y, z) = 0 is the envelope, and the equations of the line of contact are

(I)(.’L‘, Y, Z) =0, l,b((l}, Y, z) = ¢(§: s E)
Now the equations corresponding to /= 0, Df/Da = 0, D¥/Da® = 0 are

qS(w’_ v,2)+ [Y(wy.2) —af =0,
- 3[¢(a‘,y,z)—a]9‘=0,
6 [y (x,y,2) —al =0.

These are all satisfied by the coordinates of any point on the line of contact.
Hence two consecutive characteristics coincide. This accounts for the factor
[¢ (x, ¥, 2z) ]? in the discriminant.

Axt. 8.— Consideration of Loct of Binodal Lines, which are also Envelopes,

(A.) It will be shown that this is the case reserved in Art. 1, viz., where
D%, /Da,? = 0.
The equation of the biplanes is

(€ €](X — €7 + [, 9] (Y — 9 + [£ 0 (Z — L
20 (Y =) (Zm )+ 2[4 €] (Z—0) (K= &) 4 2[£m] (K= &) (Y — ) = 0 (55).

This breaks up by (29) into the two planes
X 2
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[ E1{m E1(X — &) + [, 0] (Y — ) + 0, 0 (Z =)}
+ { =[] LV IENF —[EE Il L& (X — &)+ [E49](Y — )
FEL(Z =0 =0 . (54)

Now since equation (27) depends on (24) and (25), therefore

l;f, £l € 7] L& ]
7.¢1 [nn]l  [n o]
[, & [oz, 7] [, i=0 . . . . . . (55),

Putting [«, ] = 0, this becomes

[a; n]* [5, E] = 2[a, ][ E1[En] + [ EP [ n]=0 . . . (56).
Therefore

[w,n]/ [ €] = {([En] £V [En] —[E€l 3/ [6€6] . . - (57).

Hence the equation of one of the biplanes is

[, €] {61 (X = &) + [ n] (¥ =) +[L0](Z =0}
— e (& E1(X — &) + [En](Y =) F[EQZ~ D =0. . (53).

Now if &4 8& 9 + Oy, { + 3 be a point on the locus of binodal lines near to
& m, ¢, it follows by (24) and (25) that

[, €] {[& n](3€) 4 [ m1(8n) + [£ 9] (80)}
— [, ] {[£ €] (8) + [Em] (&) +[&£ L]0 =0 . . . . . (59)

Hence the tangent plane to the locus of binodal lines takes the same form as (58).

Hence the tangent plane to the locus of binodal lines is the same as one of the
biplanes. :

Hence the locus of binodal lines is also an envelope.

(B.) The converse proposition, viz., that if the locus of binodal lines be also an
envelope, then [a, a] = 0, will now be proved.

As before, the equations of the hiplanes are given by (54), and the tangent plane
to the locus of binodal lines takes the same form as (58). If, then, the locus of
binodal lines be also an envelope -

(=& EVIE P — & Elln ml}/[E El= —[a n]/[% €] . . (60),
[, 7P (€ €] = 2 [ n](a, €106 0] + [ EF[nm]=0 . . . (61).

therefore
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The equation (61) is the same as (56).
Comparing it with (55), which holds when a locus of binodal lines exists, it follows
that ’

e Ellmml = [EnPie a]=0 . . . . . . (62).

(&l ] =& mP=0 . . . ... .. (83)

If (63) hold, then by (61)
[‘z’ "7:] [S) -f] - [a, é':] [f’ 7}),

L€ €1/1E n] = [& nl/[n: m] = [, &]/[, 7]

Making use of these with (24) and (25), it follows that each of these fractions is
equal to [€, {]/[n, {].

Hence (24) and (25) are equivalent to one equation ouly.

But it was shown that (26) and (27) depend on (24) and (25). Hence (25), (26),
(27) all depend on (24).

Hence the ratios (38) hold, and therefore there is a locus of unodal lines. But this
is not the case under consideration, for it is supposed that there is a locus of binodal,

Hence [a, a] = 0, or

“therefore

not unodal, lines.
Hence (63) is not satisfied, and, therefore, [, a] = 0.
(C.) In this case the values of da,/dx, da,/dy, given by (47) and (48), are really
infinite, for D,/Da, Dz does not vanish necessarily, but D;/Da,2 = 0.
Consequently the differential coefficients of A require further examination.

Now

D, Oa, Dy A\ /DY
it = = o)
w, Dz o day D) | Day
/D

Since D?*f;/Da, Dx does not necessarily vanish, it must be shown that f, [ Day?
1

= 0

at points on the locus of binodal lines ; i.e.,

. /DY @y, 2 @) _
.f(o“" ?/, 2 C”Q)/ Da}z - O’

when @ = & y =, z = (, the coordinates of any point on the locus of binodal lines.
Now a,, a, are the roots of
1 272

Df@y.ma) _
Da 7

which become equal when & = & y =, 2 = {
In this case f(w, y, 2, @) = 0 is an equation for ¢, such that three values become
equal when 2 = & y =9, 2 = {. (They become equal to the same value as a,, a,.)
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Put, therefore,
' f=R@—a)(a—a)(a—oay) . . . . . . . (64),

where o), a,, o, become equal when & = & y =1n,z={

Therefore

Df _ DR
ﬁ; s m* (OL — X’l) ((,‘L e ag) (@ - 0‘3)

+ R {(0—a) (2 —a) + (2 — o) (@ — o)) + (@ = &) (@ — )} . (65),

= D (o — ) (0 — o) (o — )
T2 0 (= o) (0= a) (= ) (@ — ) (0= ) (@ = 2,)}
+ 2R {(0 — &) + (@ — ay) + (& — ag)} N I

Now, at a point on the locus of binodal lines, the two equal values of a which make
Df/Da = 0, become equal to the same thing as a,, a,, a,.

Hence f(z, y, 2, a,) = (R') (2y — @) (2 — ay) (5 — @3), where R’ is what R becomes,
when « is changed into «,. .

Hence f(x, 9, 7, a,) is of the third order of small quantities ; but D*/(x, ¥, 2, a,)/Da;®
is of the first order, for the most important term in it is

2(R) [(ay — o) + (@) — ay) + (2, — )]

Hence
O @, 9,2 @) _
f(x>?/’z»a2>/ Da,? =0 . . . . . . . (67)
at points on the locus of binodal lines.
In like manner
/{Dgf(x, Y, % ccl)}‘2 .
fla, vy, 2 052)/ o =0 . . .. . (68),
but
Dz, v, 2, a,)] 3
Sy 2 %)/{ ﬂ%%“l)} £0 L (69)

at points on the locus of binodal lines.
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(D). Tt should be noticed that in the preceding section (C), the infinitesimal
of the first order is the increment in the value of «, a root of Df(x, v, 2, @)/Da =0,
when & =, { receive increments 8¢, 8y, 8 respectively ; and in particular that it is not
of the same order as 8¢, oy, 8{

For if S« be the increment in the value a, then

[, £](8€) + [, 1] (89) + [« {] (80) + [=, &] (8a)

o, & €1 (38 + [a m, m] (0)° + [ & (807 + [, @, @] (Sa)*
b4 2 [ £ (5) (50) + 2[a, & €] (80) (88) + 2[a, & ] (3€) (3n)
+ 2[a, 0, £] (80) (5¢) + 2 [ o, ] (8a) (8n) + 2 [, o, ] (8) (80)

+. - . . . o . . N . N . B . . N o . ¢ . . . . ——0-

Now because [&, o] = 0, this equation can be written in the form

w4+ uy + 20, (8a) + v, (8a)* = 0,

where the suffixes denote the order of the terms, when (8¢), (&), (8() are taken to
be of the first order.

Hence, if € denote an infinitely small quantity of the first order in (8¢), (dn), (80),
then da is of the order €2

And now f(x, y, 2 ay), when x = £+ 8¢, y = 9 + 8y, 2= {4 8, and g, = a + 8a,

becomes

SEn §o) + [E]1(3€) + [] (8n) + [£] (B0 + [«] (8«)

= & EJBEP + [y ] () 4 [& LI (B8 + [, @] (8=)* 7
+ &+ 20n, L (8) (8 + 208 €](30) (3¢) + 2 [£ 1] (3¢) (3n)
_t+ 2[e, £](8a) (8¢) + 2 [, n] () () + 2 [, £](3«) (8C)_]
+ .
= 7 [& E](8E) + [, m] (o)* + [ L] (3) ‘
4|+ 2[ng] (3n) (30) + 2[4 £1(80) (36) + 2[€ ] (3¢) () |
_+ 2[m, £](8e) (88) + 2 [% ] (8«) (81) + 2[&, £](32)(8L) |
+ .

Hence f(x, y, 2, a,) is of the order € when @ = ¢ + 8 y=mn+ &y, z=1_+ 8L
In like manner, when @ = &+ 8§, y =9 + &, 2 = { + 8, 0, = « + 8/,
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D (z, y, 2, a,) = [a, «]
Da? ’
+ [, %, £1(88) + [ @ 9] (8n) + [, & L](SL) - [« &, o] (3)
+ .

Now 8a’ can be shown to be of the order €' in the same way that da was shown
to be of this order.
Hence D% («, v, 2, @))/Da,? is of the order €/

Herce the same results as those given in (67), (68), (69) follow.

(E.) Bxamination of the Dufferential Cocfficients of A.
Differentiating (52) with regard to =,

FR Ok [, 1) Df,
= A + 25, (g +/g)

v, Dy
j ? <ng Da Da, 80)
+ R +ZD¢ Dz
DY, , DY, oa,
+f1<])x~TDxDagax> Coe e e (70).

Hence the terim

j D"J‘l 9@1 ./ DY, / 'Dgf1
2 (T.)d, Du

D Da, ¢z~ “/2\Da Da / Da,?
vanishes by (67) at points on the locus of binodal lines.
Hence 0?A/0x? = 0 at points on the locus of binodal lines, if it be assumed that
D?*f/Dx De, is finite.
This assumption can be made if ¢, be finite.
Again, differentiating (70) with regard to =,

i'f%SA ol oR D D
= Sshh 35 (Ao + )

4 3R 112] ! D d_“_l Pfl Dfy D, D, Oa,
sl Lﬁ’< Dz Day ax> T 200 0o T/ <D@~ Dz Da, aT):]

D f1 ~ kaj_ oa, Dy, (DY DY, Oa, a
f2 O ( Da D:; > +8 0, (D@; + Dﬁ)‘z '85&)
+ 3 Df1 (D?fQ

+ R
DY, day O (D, D, ey
Da? + D b, Dz Da, F)L) + o <D.z2 + Dz Da, ox ) C (71).

1
.
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In this case the infinite quantity oa,/0x occurs in the term
*f DY, Oa,
Ja oz (sz + Da Da, 090)

(B ()

DADA (DN /P.Qli}
sz[ Da? Da,? Dz Da,) /] Da?
=1 D%
DeDa; D { DADY, [ D >°> /D%,
D¥ Da, | \Da#? Da,? Da Da,/ )/ Da?
Da,?
f D — 3 Jo DA D3
2 Do D*, Da Da, Da? Da,
Da,?
ba B (DAY DA g (D D
D2y » D Dal) Da Da,? %,Fl Dz Da,) Daj
Da?/ Da?

Now it has been shown in (67)—(69) that fz/ D

2
S / <m‘é> does not vanish at points on the locus of binodal lines.

/ < 2f‘> both vanish, but

2

Hence f, & Gii;‘ -+ I)i) _QOLI %a > does not vanish.

D D ) .
Similarly £} % <Dig + Dv{fag gj) does not vanish.
The order of the term

DA, DY,
Dw Da Da, oz

cannot be determined in a perfectly general way, for although Df,/Da vanishes, yet it
contains Oa,/0x, da,/dx, Oa,/ox, which may be infinite, since a,, oy, ey are irrational
functions of the coordinates.

These results point to the conclusion that 03A/0x® does not vanish at all points on
the locus of binodal lines. This is readily proved in particular cases. (See Example 5
below.)

Hence, at points on the locus of binodal lines, A = 0, 0A/dx = 0, 0*°A/0z® = 0; but
OSA/0S = 0. |

Hence, if B =0 be the equation of the locus of binodal lines, when that locus is
also an envelope, A contains B? as a factor,

"
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Example 5.—Locus of Binodal Lines which s also an Envelope.
Let the surfaces be

(6 (5, 5, P + (29, ) [ (2, 9, 2) = ol + [ (e, 9, 2) = aP =0,
(A.) The Discriminant.

The discriminant is found by eliminating ¢ between the above and

b (x, y, 2) + 8[Y (w, y,2) —al = 0.

The last equation gives

Y@y, 2) —a=£/{—5b@y 2

Hence the eliminant is

(@ P +3d@ya) v —5é@y )3
| X ([ (m 0, F =3 (2 02V =5 (@ 5 9)
=[b(e . P (B g, 2) + o

Hence the locus of ultimate intersections is

[(b (ma Y, )]3 [‘ib (.’L‘ Y, Z,) + _] = 0.

(B.) The locus of Binodal Lines (which is also an Envelope) vs ¢ (x, y, 2) = 0.

For let &, n, ¢ be any point on ¢ (z, ¥, 2) = 0.
Take @ = ¢ (£, », {), and consider the single surface

[¢ (2 9o )P + by 2) [ (@9, 2) =4 (&, O]+ [ (2, 2) = (& m, §F = 0.

Put 2 = E+X,y=n9+Y,2=_+ Z; then the lowest terms in X, Y, Z are

pevte (st nitea) (v

Hence the origin is a binode.
Hence ¢ (z, y, 2) = 0 is the locus of binodal lines.
Further, because the biplanes ave, when the origin is at the binode,

8 0
X P vlai=

(Xa§+‘i’¢+4£>+( —‘;+Y E{M):’o,
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The first of these touches the locus of binodal lines. Hence the locus of binodal
lines is also an envelope.
Hence the factor [¢ (, ¥, 2) [P of the discriminant is accounted for.

(C.) The Surface ¢ (x, y, 2) + 54 = 0 is an Envelope.

For seeking its intersection with

[b (@ 9, AT + ¢ (2, 9, 2) [Y(2, 9, 2) — o] + [¥ (2, 2) —aP =0,
it follows that

Put
(@, y, 2) — @ = /9,
therefore
n— 129 4 16 = 0,
therefore

(n—2P(n+4)=0,
i'e" {9 [‘.b(m’ Y, z) - a] - 2}2 {9[\[1(&7, Y, Z) - OL] + 4} = 0.

Consider now any point & =, { on the surface

[¢ (2, 9, )P + ¢ (2 9, 2) [¥ (=, 9, 2) —a] + [ (2, 9, 2) —aP =0,

for which
¢(§, s g) + wr = O;
and

iﬁ(f’ﬂ,i)“a'“%:()-

The equation of the tangent plane at such a point is

[zqs(f,n,c)w(f,n,o—aj[(X—s>@f+(Y—-n>a?+<Z—c>ai]
F im0+ smnEm )~ K=o 2 + (V= +z- 0] =0

This reduces to

0 0 0
X =5+ T =05 +E=-D5 =0

which is equivalent to

{(X f)ap"“(v )§a“+(z—€)§§}[¢( 7,0) + 5] = 0.

Y 2
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Hence it touches the surface ¢ (x,y,2) + 3% =
Hence ¢ (x, y, 2) + 5% = 0 is an envelope.
This accounts for the factor ¢ (x, y, z) + 5% in the discriminant.

(D). Examination of the term D*f/Dx Da, for this example.
The equation Df/Da = 0 is, in this case,

¢(®,9,2) + 3 (% y,2) —af =0
(/J" ((L', Ys z) + 3 ["vb(x Y, z) - 001]2 = 0:
and ow, /0x is determined by

,,,,,, +6[4;(0€ Y, )—-al:ll_a\!’ a?]: 0.

or

Hence a,; satisfies

Hence, at a point on the locus of binodal lines, 7., where ¢ (z,y, ) = 0,
Y (2, ,2) = a,, it follows that da,/0x is infinite.
Calculating D¥/Dax Da, it follows that it is

ay

5 0
P =6y — ]S

Hence, D?,/Dx Da, is equal to the value of — 0¢/ox at the point on a locus of
binodal lines. Hence it is finite,

(E). Examination of the values of f, / ]]))iff Jo / <£af~> Jo / <1Ij)aff>

In this case a,, a, are the roots of

dEn )+ 8 (En ) —af=0.

o =g (&, O — /{— 59 03,
ay=9(&n, O + V{54 (& 03

Therefore,

Hence

f(.%‘, Y, % “2) =[¢ (5: yE C)]z + ¢ (& B C) [ (5’ M, {) — ay| 4+ [ (f’ 7, {) — o

= [qs (f: 7, C)]z - %(l) (é:a yh C)\/{— %(}') (5, /B Z)}

W:G[\p(f,n,g)wadz 6\/{""%¢(§}7’; g)}'

Hence

fg/Df‘ = 3[¢ Em ] =36 EnY
S/ (BA) = = b En D+ A = h e (6 O
ﬂ//(ﬁc;fl) = —‘\‘/77?3;[95( O+ 1w
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Hence, at points on the locus of binodal lines, w.e., when ¢ (&2, {) = 0;

D?f, DY\? D,\3
$fpes =0 Af{neg) =0 /(5] =bs

Art. 9.— Consideration of Loci of Unodal Lines which are also Envelopes.

(A.) Tt will be shown that this is the case reserved in Art. 1, viz., where

D3/, /Da® = 0.
For if D*,/Da? = 0, t.c., [, a] = 0, be substituted in the ratios (38), it follows
that :
[a, ] =0, [&,n] =0, [, {]=0.

‘Substituting these in (24)~(26), it follows that

[€ €1(8€) + [&,m] (&) +[£C1(8) =0 . . . . . (72),
(7, €1(3€) 4 [m, n] (8n) + [0, L1 B =0 . . . . . (73)
(L E1(86) + L] (3n) +[L L1 =0 . . . . . (T4).

Now (72)-(74) are equivalent to one equation only by (38). Hence the tangent
plane to the locus of unodal lines is

[EEX =& +[En](Y =) +[EL(Z -0 =0

Now the tangent cone at &, u, { is given by (53).
The left-hand side of its equation is by (38) a perfect square.
Hence the uniplane is

X -+ [EnNT =) +[E0EZ-H=0 . . . (75).

Hence the uniplane is the same as the tangent plane to the locus of unodal lines.
Hence the locus of unodal lines is also an envelope.

(B.) The converse proposition, viz., that if the locus of unodal lines be also an
envelope, then [a, ] = 0, will now be proved.

If & 4 8¢ n 4+ &, {4+ 8L be a point on the locus of unodal lines near to & %, ¢,
then the equations (24)-(27) hold.

If the locus of unodal lines be also an envelope, then the equation of the uniplane

(75) is satisfied by the values X = E4 86 Y =n+Z=10+ 8L

Therefore
[& £1(8¢) 4+ [€ 1] (8n) + [§ £1(8) = ©.
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Comparing this with (24), it follows that
[OL} f] = 0

Hence, by (38),
[, o] = 0.

(C.) In this case, the values of 0a,/ox, da,/0y given by (47), (48), ave indeterminate.
For, because [a, a| = 0, it follows by (38) that [«, €] = 0, [2, 9] =0, [«, {] = 0.
Hence, to determine oo /dx, it is necessary to differentiate (44) with regard to x.
Therefore

[£, & o]+ 2[€ o, a]% + [a, o, a] <8/zl> + [, a]gi-%: 0 . . (76).

Hence, because [«, a] = 0, and assuming that 0%, /0x? is finite, da, [0z satisfies the
equation
: Oy \? -
(6 6]+ 2[6m o]0 4 [nn alla) =0 . . (D)
Similarly day/ox satisfies (7).
Hence, when « = &, y =, 2 = {, &, = a, = «, it follows that 0a,/0x, da,/ox are
roots of the same quadratic.

‘They are finite provided
D%/DOLI‘Q‘:/:O,‘. Coe oL (78).

The case excluded is that in which Df'(x, y, 2, ¢)/Da = 0 is satisfied by three equal
values of a, when x = &, y =7, 2= { This case might be investigated in a similar
manner to the case in which the above equation is satisfied by only two equal values
of @, whene =& y=m, 2 = {

D. Examination of the Differential Cocfficients of A.

In this case A and its differential coefficients are given by equations (51), (52).
(70), and (71). From these it can be seen, without solving the quadratic (77) for
0a, [0z, da/ox, that A, 0A/dx, 0°A/0x?, 83A/0x® all vanish, when 2 = £ y =19, z = {.

In like manner it can be shown that all the third differential coefficients of A
vanish ; and, therefore, if U = 0 be the equation of the locus of unodal lines which is
also an envelope, A contains U* as a factor.

Example 6.—Locus of Unodal Lanes which is also an Envelope.

Let the surfaces be

(¢ (2, 9, 2) P = [¥ (2, 9, 2) — o' = 0.
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(A.) The Discriminant.

The discriminant is found by eliminating « between the above equation and
3 (x, y,2) = af = 0.

Hence it is [ ¢ (=, y, 2) %

Hence the locus of ultimate intersections is
lé(z,y,2) 1= 0.

(B.) The locus of Unodal Lines wkich is also an Envelope is ¢ (x, 3, 2) = 0.
For, let & %, { be any point on the surface ¢ (x, y, 2) = 0. Take & = i (9, {), and

consider the single surface
[ (@, 4, 2) P =W (2, 5, 2) — (&, OF = 0.
x=E+X, y=n9+Y, z2={+Z

Put

Then the lowest terms in X, Y, Z are

gevigariy)

Hence ¢, %, { is a unode on the surface
[¢ (9, 2)f = [W(z 0, 0) =¥ (Em O = 0.

Hence the locus of unodal lines of the surfaces under consideration is ¢ (, y, ) = 0.
Moreover, the uniplane
xﬁ+y%4z¢
is also a tangent plane to the locus of unodal lines.
Hence the locus of unodal lines is also an envelope.
Hence the factor [¢ (x, ¥, 2)]* in the discriminant is uccounted for,

SecrioN 111 (Arts. 10-11)—~SUPPLEMENTARY REMARKE,
Art. 10.—Further remark on the case in which Df,/Da,® = 0,

This condition indicates in general that the equation Dfy/Da, = 0 has two equal
roots, but if f; be of the second degree in «,, Df,/Da, is of the first degree in a;, and
hence it has either one root in @y, or is satisfied by an infinite number of values of a,.

It is desirable to notice the latter case, because it coiresponds to an important case
treated in Part IL., Section IV., of this paper,
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Let f=Uda*+ 2Va + W = 0, where U, V, W are rational integral functions

of &, y, .
Then the conditions f'= 0, Df/Da = 0, D*//D¢* = 0 are equivalent to

Ud® 4 2Va 4+ W = 0,
Ua + V = 0,
U =0,

at all points of the locus of ultimate intersections.

Hence U = 0, V=10, W = 0 at all such points.

Hence unless U, V, W have a common factor, which could in that case be removed
from the equation /= 0, the locus of ultimate intersections is not a surface, and hence
its equation cannot be obtained by equating a factor of the discriminant to zero.
Hence this case need not be further considered.

Art. 11.—1f the surface f(w, y, z) = 0 have upon @@ a curve at every point of which
there s a comc node, then the tangent cones at the conic nodes must break wp
wnto two plones.™

Let &, {; €+ 8¢, m + 8, { 4+ 8L; be neighbouring points on the curve.

Then since there is a conic node at &, 9, {;
SE m, §) = 0, DfIDE = 0, DffDy = 0, DfJDL = 0.

And sinee there is a conic nede at € + 8¢, n -+ 8y, { -+ 8¢, four other equations hold,
which by means of the above give

L& €] (8€)* 4 [, ] (8)* + [, L] (8L)

-+ 2[m, {J (8) (BL) + 2L €] (80) (8¢) + 2[& 7] (8¢) (8n) + . . =0,
€ €1 BE)+TE 9] (On)+[E 1)+ . . . . . =0,
[ E]OE) + [l O+, GO+ . . . . . =0,

(& ET@E) + [l G+ ]G+ . . . . =0

Retaining only the principal terms in the last three equations, it follows that

% The geometry of a surface of continusus curvature shows at once that there cannot he a curve of
gonical points on a surface.
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L€ €1(36) + [ ] (8n) + [ ] (8) =0,
[7, €1 (3€) + [, m] (8n) + [, L (80 =0,
(& €1(8€) + [ 1] (3n) + & {1 (80 =o.

These equations must be consistent, and therefore

DLEL . €11 _
D[ E’ n, 4 ] -

This is the condition that the tangent cone at &, v, {, viz. :—

(61X =& +[nn] (Y —»f +[{ L (Z -0
2, gV =) (Z—-0+2[LE]1(Z—- )X =) +2[Eq](X -6 (Y —n) =0,

may break up into two planes.

PART IT.—THE EQUATION OF THE SYSTEM OF SURFACES IS A RATIONAL INTEGRAL
FUNCTION OF THE COORDINATES AND TWO ARBITRARY PARAMETERS.

SectioN L (Art. 1).-—PRELIMINARY THEOREMS.

Art. 1. (A)) If & =, L are the coordinates of any point on the locus ¢ (x, 1, 2) =0
(where ¢ is a rational integral indecomposable function of x, y, z), and of the
substitutions x = & y=m, 2 = { make ¢ (, y, z) and all its partial differential
coefficients with regard to x, y, z up to the n'* order vanish, and of they also make
any one of the partial differential coefficients of the (n + 1)* order vanish, they
will also make all the partial differential coefficients of the (n + 1) order vanish
(¢ bemng o rational integral function of w, y, 2, but not wn general indecom-

posable).

Suppose that when . = §, y =, 2 =,

ortl ,\p.
axr+1 ays a,:n-—r-—s - 0’

where 0 denotes partial differentiation when , ¥, 2 are independent variables.
To prove that the same substitutions make

2+ 1
”“*B—L_—: =0,
axe ays-rl Oz —r—8

and
an +1 ,\p,
MDCCCXCIL—A., Z



170 PROFESSOR M. J. M. HILT, ON THE LOCUS OF¥ SINGULAR POINTS

It is given that all the values of x, v, z which make ¢ (x, y, z) = 0, also make

an +1 ,\P,
01 3y e s = O

Now let &+ 8¢, n + 8, { + 8L be a point near to & u, { on ¢ (, v, 2) = 0.
Therefore ¢ (£, », {) = 0.

GE+En+ 8, L) =0 . . . . . . . (1)
an+1,\lr _
dgTiapag e 0

(2).
And since & 7, { make

T
ox" ag/s a”d" —p-s T

for this is a differential coefficient of the n'* order, & + 8&, n + &y, { 4 8¢ must also
do the same.

Hence

an+1,\!r an+1\[, 8n+1,¢,‘ .
(SE) afr+1 a,]s aé’n—-r—s + (87’) ag¢ ans-*-l aé'n——r—s + (Sg) aEr ans aé'n—wﬁsﬁ-l - O'

Also from (1)

o\ O 0 0
(86) 5% + (B 5. + (80)

©-

|

= 0.
4

job)

Since this is the only relation between 8¢, 8y, 8¢, it follows that

® T ® @

Hence, by means of (2),

7+ 1 i+ 1
S A N Sk S
aé:a ana+la§n ) afransaé'n s+l

0.

In this way it is possible to pass from any one partial differential coefficient of
order (n 4 1) by successive steps to any other of order (n+ 1); at each step always
diminishing by one the number of differentiations with regard to one variable, and
increasing by one the number of differentiations with regard to another variable.

Hence all the differential coefficients of the (n 4 1)® order vanish when z = §,
y=m,2=4_{
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(B.) (i) If & =, L, are the co-ordinates of any point on the locus ¢ (», y, z) = 0
(where ¢ s a rational integral function of x, vy, z which contains no repeated
Jactors), and if the substitutions x = &, y = v, 2 = { make ¢ (x, y, 2) = 0 (where
¥ 1s a rational integral function of x, vy, z), then s contains the first power of ¢ as
a factor.

(i) If e =& y=m, 2= { make y = 0, %\f = 0, then { contarns the second power of
¢ as a factor.

m — 1
(i) Ife= & y=m, 2= make y = 0, aa“# 0, % " \’; == 0, then  contains ¢”
as a factor.

To prove (i.) suppose first that ¢ is indecomposable. It is obvious that i cannot
be of lower dimensions than ¢ in any one of the variables; if it were, then all the
values of @, 7, z which make ¢ = 0 would not make y = 0.

It may happen that ¢ does not contain all the variables a, ¥, 2 But it must
contain one of them ; suppose it contains .

If ¢ be not a factor of ¢, proceed as in the process for finding the common factor of
highest dimensions in @ of ¢ and 4 ; and if, at any step of the process, fractional
quotients in which the denominators are fuunctions of y, z are obtained, let the
denominators be removed in the usual way by multiplication throughout by a factor.

Then either the process will terminate, or there will at last be a remainder, which
is a function of ¥, z only, not .

In the first case ¢ and ¢ will have a common factor, and ¢ will be decomposable,
which 1s contrary to the hypothesis.

In the second case a relation of the form

Ay =B¢ + C

exists, where A, B, C are rational integral functions of ¥, z only. In this case, since
all the values of z, ¥, z which make ¢ = 0, also make ¢ = 0, therefore they make
C = 0. But C is a function of ¥, z only, not . Now, the values under consideration
are values of @, , 2. This is impossible. Hence this alternative does not hold.
Hence ¢ must be a factor of ¢.
If ¢ be decomposable, its indecomposable factors may be taken separately, and
shown as above to be factors of .

As it is further supposed that ¢ contains no repeated factors, it follows that
contains ¢ as a factor.

To prove (ii.).
By the same argument as in (i.) it follows that i contains ¢ as a factor. Let
Y = Re¢.
z 2
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Therefore,

o _ ,OR 0
ax_¢ax+Raw'

Now the substitutions z = §, y = 7, 2 = { make ¢ = 0, y = 0, oyj/ox = 0.
Therefore they make

Now all the values of x, ¥, 2 which make ¢ = 0 cannot make 0¢/ox = 0. Hence
x =& y=nm, z={ must make R vanish.

Therefore R is divisible by ¢ without remainder.

Therefore 4 is divisible by ¢? without remainder.

To prove (iii.) proceed by induction.

Suppose that the theorem is true for a given value of m, viz., that if x = § y ==,
z={ make =0, 0P/ox =0, ... 0" 1 /ox"~1 = 0, then ¢ contains ¢” as a factor.

Let it now be given that « = & y = 7, 2 = { also make 0" {j/ox” = 0.

Then by the assumption

¥ = p.¢",
where p 18 some rational integral function of z, ¥, 2.
Therefore
=p aaj; + ox

where y is some rational integral function of z, y, 2.

Now
am(i)m . ai i
o = M ! <8bo> + ¢.o,

where o is some rational integral function of w, ¥, z.
Therefore

Y — tp (%Z—S) + ¢ (po + X).

o™

Hence the substitutions # = £, y = 5, 2 = { make

g\
o) =0

‘but they do not make 8¢/8w = 0.
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Therefore they make p = 0.

Therefore p contains ¢ as a factor.

Therefore y contains ¢”*! ag a factor.

Hence, if the theorem is true for a special value of m, it is true for the next value.
But it has been proved true when m = 2, hence it is true in general.

(C.) If u, v be determaned as functions of other quantities by the equations
é(u,v) =0, ¢(u,v)=0,

where ¢ and  are rational integral functions of u, v and the other quantities; then,
iof two systems of common values of u, v become equal, they will also satisfy the equation

D4 4] _
D [u, v]
Conversely, if values of u, v can be found to satisfy at the same time the three
equations

$(u,0) =0, ¥(u,v)=0, %ﬁ% — o,

then these values count twice over among the common solutions of the equations
¢ (u,v) =0, Y(u,v)=0,

except in the case where ¢ and  are of the first degree in w and v; and then the two
equations have an tnfinite number of solutions wn common.

To prove this, let u, v represent the coordinates of a point in a plane. Then
¢ (u, v) = 0, ¥ (u, v) = 0 are the equations of two algebraic curves.
The values of %, v which satis{y at the same time both equations are the coordinates

of the points of intersection of the two curves.
Let w = a, v = B be the coordinates of one pomt of intersection. The tangents to

the curves at a, B are

a 0 a,
(U= 2ed (v g2 =,

(U )a‘[’ (2, B) + (V B) a‘l’ (“: 6) =0,

where U, V are current coordinates.
The two tangents will coincide, ¢.e., the curves have two coincident points of

intersection, if

¢ (2, B) Oy (%, B) _ 9 (2, B) 0¥ (=, B) -0
O o8 B - Ou ?
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e, if u=a, v = satisfy

D¢ ¥] _
Du,v]

In the case where ¢, Y are each of the first degree in u, v, then the theorem
requires to be specially interpreted, the interpretation corresponding to the fact that
if two straight lines have two points in common, they have an infinite number of
points in common. Hence, in this case, the two equations have an infinite number of

solutions in common. (This particular case is of great importance in Section IV. of
this investigation.)

(D.) To determine the conditions that the equations ¢ (u, v) = 0, ¥ (u, v) = 0, may
be satisfied by three coinciding systems of common values.

In this case, considering as in (C) that u, » represent the coordinates of a point, the
curves ¢ (u, v) = 0, ¢ (u, v) = 0 must have contact of the second order.
Now

op

agbdv
ou T 3o au

o du

=0

¢ O dv | ¢ [dv op dv _
o T 25utvan T 30 <du> T 5 aw

‘fﬁ_ ¢ <8¢ — 9 0’ 0 Ocp o\ ~#
du? ou? \ov Ou 0v 0w Ov + or? <8u> ov ) )
Hence, equating the values of d*/du® for the two curves, there is obtained the
further condition
> a¢> o P 8930 | & (¢ 3
ou? (317 Ou Ov Ju Ov + 31;5< > J(Bv)

[ -2 R R

Therefore

Secrion II. (Arts. 2-12).—TrE FAcrors oOF THE DISCRIMINANT, WHICH IN
GENERAL CORRESPOND TO0 ENVELOPE AND SiNcurAr Point Locr.

Art. 2.—The Fundamental Equations.

Let the equation of the system of surfaces be

S, y,2,0,0)y==0 . . . . . . . . . (3)



AND LINES IN THE INTERSECTIONS OF A SYSTEM OF SURFACES. 175

where a, b are independent arbitrary parameters, and f is a rational integral
indecomposable function of #, ¥, 2, a, b.

The locus of ultimate intersections is obtained by eliminating o and b between
(3) and

Df(x, v, 2 a,b)
“’—_m—— =0 L T (4),
Df (», v, 2, a, b)
"““—ﬁz'"‘“"‘ =0 e e e e e e (5),

where D denotes partial differentiation when «, y, 2, a, b are treated as independent
variables. |

Let the result of the elimination be A = 0, then A is called the discriminant.

If 2, y, z are chosen so as to make any factor of the discriminant vanish, it indicates
in general that it is possible to satisfy equations (3), (4), (5) by the same values
of o, b. Hence z, y, z can be expressed as functions of a, b.

In this case z = ¢ (@, b), v =1 (a2, b), z=x(a, b).

Eliminating « and b a surface locus is obtained.

This is the general case. The exceptional cases are noticed in Section VI., Art. 30.

Art. 8.—The Loct of Stngular Points of the System of Surfaces.

The equation of the locus of singular points on the surfaces (3) can be obtained by
eliminating o and b, between (3), and

Df@ g %06 _

Da =0 . . . .. .. .. (6)
Df (2, v, 2 a, b)
”“”T)y—-’:o""""'(?)’
Df @, y,2 ab)

L =0 . . . . . . . . . ()

The singular points are in general conic nodes.

The locus of conic nodes is therefore a curve, whose equations are given by
eliminating a, b between (3), (6), (7), (8).

It follows, also, by eliminating , y, z between the same equations, that there is a
definite relation between «, b.

If & =, { be the coordinates of the conic node on the surface

fle,y, 2,0, B)=0 . . . . . . . . . (9)
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and & 4 8¢, y + Oy, { + 3¢ the coordinates of the conic node on the surface

S, y,2, o +08a, B4+88)=0 . . . . . . . (10),

then the following equations all hold at the same time,

FEnR Lo B =0 . . . . ... (1),
Weated_ o L,

%&»%&ﬁ) =0 . (13),

Df—(E-’T")’;—’“’—@:o (),

and four other equations, which, by means of the above, become i
%{(80&)-{—%(86):0. L (s,

[€ €1(3€) + [& n](&n) + [€ L1(80) +[& ] (8a) + [£ BI(3B) =0 . (16),
(7, €1(8€) + [, n] () + [, £1(88) + [, @] (8) + [, B1(3B) =0 . (17),
[5 €1(3€) + [& »](Sn) + [ L] (80 + [{ «] (3a) +[4, B1(3B) =0 . (18).

If Sa, 58 be eliminated from (15)-(18), the ratios 8¢ : §n : 8, are determined. These
ratios determine the tangent line to the curve locus of conic nodes.

If B be determined as a function of «, so that (11)-(14) can be satisfied by the
same values of £, n, {, then the equations (11) and (15) show that the locus of conic
nodes is a curve lying on one of the general integrals of the partial differential
equation of the surfaces (3).

Tixample 1. Curve Locus of Comic Nodes.

Let the surfaces be
?4e(y—LtaP+(z—3bfP—cx+at+b=0 . . . . (19),

where e, ¢ are fixed constants; a, b the arbitrary parameters.
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(A.) The locus of conic nodes is the straight line.

— 1 — 1 2
r=gc¢, YFz=gc.

To find this locus it is necessary to eliminate @, b between (19) and

Df ., _

Dp=2w—e=0 . . . .. (20),
b7

Dy:Ze(y—%a):O. Coe (21,
Dr

B;:Z(z——%b):() Ce e (22).

Therefore

x=%c, y=3%a, z2=%b, y+z=4%c
Hence the locus of ccnic nodes is the straight line,

x

e, y+z=4%A . . . . . . . . (23).

(B.) The locus of conic nodes lies on the general integral of the partial differential
equation of the surfaces (19) obtained by putting b = % ¢* — a.

To determine this general integral take the values of x, y, z from (20)-(22), and
substitute in (19). This gives ¢ 4 b= ¢
Hence the general integral is obtained by eliminating a from

2t e(y—ta)l+G+sa—f)—cx41c*=0,
and
—ely—3a)+ c+ba—e)=0.
Hence it 1s

e(y+z—5)P+(1+e)(x—3c)=0.

It contains the locus of conic nodes, whose equations are given in (23).

(C.) The locus of conic nodes does not lie on the locus of ultimate tntersections.

For the equation of the locus of ultimate intersections is obtained by eliminating
a, b between

f=a+e(y—3aP+ =50 —ce+a+b=0,

D

L=—ely—La) +1=0,
D !

=== ibh)+1=0.

MDCCCXCIT.—A. 2 A
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It is therefore

1
wg—caz—|-23/+2z—1--e—:=0.

This does not contain the locus of conic nodes.
It is an envelope touching f'at the two points

¢ c? 1 H
€ == = <4—-—l--;—-05~—b>°

2
1
y:%o&—l—g,
z=4%b 4+ 1.

Art. 4.—TInvestigation of the conditions which are satisfied at any point on the Locus
‘ of Conic Nodes.

In the preceding article it was shown that the surfaces (3) have in general a curve
locus of conic nodes.

If, however, every one of the surfaces (3) has a conic node, then equations (3), (6),
(7), (8) are equivalent to three independent equations only, and the locus of conic
nodes is a surface, whose equation is obtained by eliminating @ and b between any
three of the four equations (3), (6), (7), (8).

Tt will be proved that such a surface locus of conic nodes is a part at least of the
locus of ultimate intersections.

With the notation of the last article, equations (11)—(18) hold ; but now there is no
relation between a and .

There is a conic node on the surface

J@y,za408a, B)=0 . . . . . . . . (24)
Hence (15) must hold when 88 = 0.

Hence

DffDa=0. . . . . . . . . . . (25).
Similarly

DfDB=0. . . . . . . . . . . (26).

Since (11), (25), and (26) hold at all points of the conic node locus, it follows that
the conic node locus is a part, at least, of the locus of ultimate intersections.

The position of the tangent plane to the conic node locus may be obtained from
(16)-(18) by eliminating 8«, 88 ; and then using the relations
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8 _ o _ & - (@27)

X—¢ " Y—n Z-¢

where X, Y, Z are current coordinates.

Since (25) and (26) are satisfied at all points of the conic node locus, they are
satisfied when &, %, {, «, B are replaced by &+ 8¢ n + &y, {+ 8, « + S, B+ 68
respectively.

Hence

(o, £](58) + [ 7] (57) + [ £1(80) + [, &) (5) + [, B (38) =0 . (28).
[B, £](5€) -+ [8, 4] (5n) + [B, {1 (50) + [B, « (82) + [B, B1(88) =0 . (29).

Now (28) and (29) are not independent of (16)-(18).

For if 8o, 88 are definite infinitely small quantities, then (16)-(18) determine the
values of 8¢, &, 8¢ corresponding to the conic node on the surface (10). Substituting
these values in (28) and (29), and observing that 8a, 88 being independent may be
supposed to vanish separately, the following relations are obtained (using the usual
notation for Jacobians) :—

D[ [£ [n], [£) []] _
D[Eﬂ,g,a] e Y
DL[E] ). [ [8)] _
DLE, o, £ e]= 0 v o s (Bl
DLEL LI AL g 0 (s9)

DLE, », ¢, 8]

Other similar relations exist which may be found by taking any four of the
equations (16), (17), (18), (28), (29), putting any one of the five quantities 3¢, &, 8¢,
Sa, 8B equal to zero, and expressing that the equations give consistent values for the
four quantities which remain.

Hence any minor of the fourth order of the Jacobian

D[[f]’ [7], [ﬂ? [«], [B]]
D[E) n, ¢, “?B]

vanishes.

Art. 5.—Investigation of the conditions which are satisfied at any point on the Locus
of Biplanar Nodes.

The equation of the tangent cone which, in this case, becomes the equation of the
biplanes, at the singular point is
2 A2
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[EE]X =&+ ] (Y =P +[LO(Z =)
2[00 =n)(Z—=)+2[LENZ-)(X=E) +2[En](X=E(Y—7) =0 . (33)

This breaks up into factors, linear with regard to X — §, Y —», Z — {,
Therefore
D] [0). [€1T __

BEs gy =0 e (30

Now if in (16)~(18), 88 be put equal to zero (which is possible, since there is by
hypothesis a biplanar node on the surface (24)), the values of 8£/0a, &y/da, 8/8a must
be finite.

But the denominators of the values of these expressions vanish by (34). Hence
their numerators also vanish.

Therefore

D[] 7] [=]] = -

D [[€], ). rm_o
DLE, m, t] D

EE n, « ] (35),

D[] 8, [4)] — DLLEL [l (6] _
D[f,n,é’] D[f é‘,oc] =0 . . . ... (36):

D[], [} [«]] = DL€} [, [€]] _ (37)
DIE 0 t] Dla £ a1=0  © - :

And similarly it can be shown that the following equations obtained by changing
into B in the above also hold good :—

D [[£], (1) [81] = D& [l [£] _
DLE n ¢] DlE,m.p1=0 - (39)

D[], [¢) [81] = DLLEL D) (8] _ (59)
DLE, n, €1 DLE, ¢, 81 0 U
DIOLILIBL = DIELOL I _ g (4,

DLE, n, &1 Dlu, &, 8]

From these it follows that (16)-(18) are equivalent to two independent equations
only in this case.

Now consider equations (16), (17), (28).

The equation (35) makes the determinant formed from the coefficients of 3, &y, 6¢
in them vanish. Hence it bears to them the same relation that (34) bears to

(16), (17), (18).

Therefore (16), (17), (28) are equivalent to two independent equations only.
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In like manner (36) shows that (16), (18), (28) are equivalent to two independent
equations only.

Also (87) shows that (17), (18), (28) are equivalent to two independent equations
only.

Hence (28) and any two of the equations (16), (17), (18) are equivalent to two
independent equations only.

Similarly, by msans of (38)-(40), it can be shown that (29), and any two of
the equations (16), (17), (18) are equivalent to two independent equations only.

Hence the five equations (16), (17), (18), (28), (29) are equivalent to two inde-
pendent equations only in this case. '

Since (16), (28), (29) are not independent, it follows that (amongst other relations)

D[ (&) [«], [8]] _
T R

and
D[], [« [811 _ D[n], [«], [B]] __
D[ n,e,B8 17 D[E, a, B8]

0. . . . .. (42)

Art. 6.—Investigation of the conditions which are satisfied at any point on the Locus
of Uniplanar Nodes.

In this case, the left-hand side of the equation (33) becomes a perfect square.

Therefore
& &1:[En]:[6C]
= [, €] : [, ] : [, ] |
= [Ca E] : [Cs 'y)] : [C: ﬂ' . ¢ * ¢ o ¢ * (43)'

Now, multiplying (16) by [, £], (17) by [ &], and subtracting

(o) {[& el [, €] = [m 2l [€ €1 + §B) {LE, Bl [m €] = [, BI[E €3 = 0. (44).

Now, there is a uniplanar node on the surface (24), hence 88 may be made to
vanish.

Therefore o
(& a][m, é] = el [E€]l=0 . . . . . . . (45).
Similarly
[& B][n, €] — [ BI[£ €] = 0.
Therefore
[& €]/, El=[E ]/ [mpal=[EB]/ Bl .« « « .« (46)

Now (43) and (46) show that (16) and (17) are equivalent to one independent
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equation only. Similarly (16) and (18) are equivalent to one independent equation
only.

Hence the following ratios hold .
[€E]:[E ] [& L] [€ ][ B8]
=, €] : ][, L] : [, 0] ¢ [, Bl
=[LET:[Gm 1L :[8 ] [6B] - - o o o . (47).

Applying (47) to (16) and (28), it follows that these two are equivalent to one
independent equation only.

Similarly (16) and (29) are equivalent to one independent equation only.
Hence the five equations (16), (17, (18), (28), (29), are equivalent to one indepen-
dent equation only, and, therefore, the following ratios hold

(£ &]:[&m] [& 0] :[& ] [€B]
=&l [l L] [ a] [, 8]
=[] [&n]: 6 L)L ][4 B]
= [0" f] : [OL, ”’7] : [a, Q : [“a ot:l : [O‘> 18]
=[B,&]:[Bm]:[B L [Be]: BB - - . . . (48)

Art. 7.—Examination of the Form of the Discriminant, and Calculation of its
Differential Cocfficients of the First and Second Orders.

Let ay, b, ; ay, by; . .. be the common roots of' (4) and (5), and let it be supposed,
in the first instance, that at points in the loci considered these sets of common roots
are all distinct.

Then if

A= Af(x, 9, 2, ap, b)) f (@, 4, 2 ag by) . .. (49),

where A is a factor introduced to make the discriminant of the proper order and
weight, the result of eliminating o and b between (3), (4), and (5) is
A= 0.
Writing for brevity
A= RS g s apb)=RE . . . .. .. (50)

oA _ R Df | Df Oy  Df by
aa;-axfm}” R(Dw + Da, Ox + Db, 5x>n
To determine da,/ox, 0b,/ox there are the equations
bf br
BL=0, gho=0 . .. (a)
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These give
0 oh
[x, ar] 4+ [y, )] a_éﬁ + [a, b,] a—l = O]i

oa ob,
[z, b1] + [, 1] A+ [0, bl]('\ =0 |
Similar equations exist for finding
day b Oy by
5 0 and 50 0

These, however, are not yet required, it being szen at oncz that, in general,

0A

= aﬂf—l—R B 53

[For a case of exception, in which Il))c{ 8862 + I?Z]: oby does not vanish, see Art. 19,
1

Ex. L1, E.]

Differentiating again with regard to x,

FA R Df y DY 8@1 DY b,
ox* T aﬁ f+ dz Dz + R [D'c2 + Dz Da, ox + Dz Db, 893:] - - (54),

oA _ R . ORDS | ORDS DY DY dn , DY
dwdy 3w8yf+ dz Dy " Dy D t R!:Dml‘)y s Da, Oy +D7cl)b aj} - (55).

Hence, by (52),

. : p[B, 2, 1] /D
2 R R Df Dz’ Da,’ Db
0? 813f+ 2__7 + R D [, “1,1 0]

. : D‘LDf L Df]/,D [Df Df] o
kaiA R R Df , ok Df Dy Da’] Db Day Dby | (57).
ordy aucan_l- dx Dy + oy Dz +R Dz, a,, 0,] D[Ol‘l: bl 7)

bf  Df
Da,’ D{)‘ .

D [ay; 6] (56),

Art. 8.— Proof of the Envelope Property.

- Let & m, Lbea point on the locus of ultimate intersections, and let the values of
a, b satisfying the equations (3), (4), (5) whenx = ¢ y=m,2=2¢{ be o, 8. [It
will be supposed first of all, that only one value of « exists, viz., a, and only one value
of b exists, viz., 8. But the following cases will afterwards be noticed, viz., (1)
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where more than one system of distinct values of «, b exist, and (2) the particular
case of the preceding in which two systems of values of «, b exist which coincide. ]

In this case equations (11), (25), (26) are satisfied.

Hence when @ = & y = n, z = {,

A=0
and
aaf becomes [R Réj! ;Zé
Hence when x = &, y =, 2 = {,
0A D _9ADf_OAMDS - (5a).

Or | Da = oy /Dy~ %/ Dz

Hence the tangent planes to A = 0, f(x, v, 2, &, B) = 0, coincide at & », {. This
proves that the locus of ultimate intersections is generally an envelope.

It should be noticed that the proof shows that the locus of ultimate intersections
touches in general at each point on it one of the infinite number of surfaces of the
system passing through that point. This will be referred to in future, to distinguish
it from more complicated cases, as a case of the ordinary envelope.

It should also be observed that the above conclusion cannot be drawn if
x =& y=m, 2= {make DffDx = 0, Df/Dy = 0, Df/Dz = 0.

Hence the investigation itself suggests the examination of the case in which a locus
of singular points exists.

Art. 9.—To prove that if E = 0 be the equation of the Envelope Locus, A contains
E as a factor once and once only in general.

(A). If e = & y ==, 2= { be a point on the envelope locus, then suppose that
the values of a, b satisfying (11), (25), (26), are a, B.
~ Then one of the systems of values of a, b satisfying (4) and (5), must become equal
toa, Bwhenx =§ y=n2=1_

Suppose that o, becomes «, b; becomes S.

Hence A becomes R (& 7, { o, B), where R’ is what R becomes, and therefore
A vanishes.

Hence by Art. 1, Preliminary Theorem B, A contains E as a factor.

Further, A does not contain F more than once as a factor in general, for the value
of A/0x given by (53) does not in general vanish. But it would vanish if A con-
tained a power of F above the first as a factor : for suppose A = E”. , where m is a
positive integer greater than unity, and ¢ some rational integral function of , ¥, 2.
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Therefore

aé}.— m—-l md‘lb‘
oW = mET Ut E R

Hence when v = ¢ y =7, 2 ={, 0 A/0x = 0.

Consequently, A contains E once, and once only in general as a factor.

(B). It is necessary to examine the cases of exception.

(i). If equations (11), (25), (26) are satisfied by more than one set of distinct values
of @, b; take, for example, the case where there are two sets of solutions, &, 8, ; @, B;

Let ay, b, a,, b, become a,, Bl, &g, ,82 respectively, when 2 = & y =, z = {
Putting

A=Rf(z, y,2 a,b) flz, 9,2 a,). . . . . . (59),
%A aai,f(w Y 2y, by) [y, 2, 0, bz) + R e, % % l)f(m Y 2, Ay, by)
D , , by
RS (=, 1, % ay, by) f<’” N (1))

Now,whenz = §& y =1, 2 = {,

S (=, y, 2, &y, b)) becomes f (& n, {, o, B,) and vanishes,
J(x, y, 2, ay, b)) becomes f (& n, {, &, By) and vanishes.

Hence 0A/ox vanishes. Similarly 0A/dy, 0A/0z vanish. Therefore A contains E?
as a factor.

Similarly if there be p distinet sets of values of a, b satisfying (11), (25), (26),
it can be shown that all the partial differential coefficients of A up to the (p — 1)t
order vanish. Hence A will contain EZ as a factor. (See examples 4 (C.), 5 (C. ii.),
6 (C.) in Arts. 10, 11, 12 respectively.)

(i) The case in which two of the systems of values of the parameters satisfying
equations (11), (25), (26) coincide, is dealt with in Arts. (12)-(25). The case, in
which more than two systems of values of the parameters satisfying equations (11),
(25), (26) coincide, may be treated in a similar manner.

Example 2.—Ordinary Envelope.
Let the surfaces be
‘ z4 (x—a)(y —b)=0.
(A.) The Discriminant. |
A=z
(B.) The Envelope Locus is z = 0.

Every point on z = 0 is the point of contact of one only of the surfaces. Hence
z occurs as a factor once only on the discriminant.
MDCCCXCIL—A. 2B
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It may be noticed that z = 0 touches each of the surfaces at one point only,
x = a,y = b, This result may be compared with the next example.

Example 8. Ordinary Envelope.

Let the surfaces be

2+ (¢ — a) (@@ + y*—b) = 0.
(A.) The Discriminant.
A=z

(B.) The Envelope Locus is z == 0.

Every point on z = 0 is the point of contact of one only of the surfaces. Ience
z occurs as a factor once only in the discriminant.

It may be noticed that z = 0 touches each of the surfaces at two points, viz,

x=a,y =+ /(b —a.

Art. 10.—T0 prove that of C = 0 be the equation of the Conic Node Locus, A contains
C? as a factor in general.

Let &7, { be a point on the conic nede locus, then equations (11)-(14) are satisfied.

Hence, by (50), the substitutions @ = &, y = 0, 2 = {, make A = 0; and, by (53),
they also make 0A/dx = 0. '

By symmetry they also make 0A/dy = 0, 0A/0z = 0.

Hence, by Art. 1, Preliminary Theorem B, A must contain C? as a factor.

Example 4.—Locus of Conic Nodes.
Let the surfaces be

a(x—a)y+ By —0P+ 6m(x—a)(y—>b) + yz*=0,
where o, B3, y, m are fixed constants, , b are the arbitrary parameters.
(A.) The Discriminant.
To eliminate @ and b between f= 0, Df/Da = 0, Df/Db = 0, is, in this case, the

same as eliminating @ — «, y — b between

f:: 0 Df = Df

D (@ —a) * Dy-b
7.e., making the equation homogeneous by putting

x—a=X/Z, y—b=Y]/Z,
it is necessary to find the diseriminant of -

X5 4 BYS + 6mXYZ - y2°Z% = 0.
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The invariants will in this, and in several of the examples which follow, be calcu-
lated from the results given in Sarmon’s ¢ Higher Plane Curves,” Second Edition,
Arts. 217-224.

- ‘The invariant 8 = mafSyz? — m*,
The invariant T = &?B8%%* — 20 mPaByz* — 8m?.
Hence A = T? + 648° = aBy2* («Byz* 4 8m?)3,

(B.) The Conic Node Locus is z = 0.

Transforming the equation to the new origin a, b 0, the lowest terms are of the
second degree. o

Hence the new origin is a conic node on the surface.

Hence z = 0 is the conic node locus.

Hence A contains 2° as a factor.

(C.) Three non-consecutiwe Surfuces of the System touch cach of the plomes'
2z = 4 ( — 8m3/aBy)\? at each point.

To prove this, the tangent planes to the surfaces which are parallel to the plane
z = 0 will be found. s

The tangent plane to the surface

a(x—aP+ By—0bP+ 6m@@—a)(y—>0)+ y2* =0
at & m, { 1s
(@ — &) (30 (€ — a)? + 6m (9 — U] + (g = ) (3B (n — bP + 6m (¢ = )]
+@E—=02yf=0.

If it be parallel to z = 0, the coefficients of # and ¥ raust vanish, but the coefhment
of z must not vanish,

~ Therefore, '
a(§—a)®+2m(n-—-0)=0. . . . . . . . (61),
Bn—0bf+2m(E—a)=0. . . . . . . . (62)
From these, and from the condition that &, 4, { lies on the surface,
gm(E—a)(mp—0)+yl=0 . . . . . . . (63)

If these be satisfied, and { do not vanish, the tangent plane is z = £
The solutions of (61), (62), (63) are

E—a=0, 7—b0=0, {=0. . . . . . (64),
£ —a= — 2ma=¥ B-13, N—b=—2ma~BR-W =4 (_ ng/aBy)l/z (m),
¢ —a=—2moa™ BB, n— b= — Imeu"B B, { = 4 (— 8m3aBy)? (66),
§—a=—2m'a MR, 5 — b= — mwa~WBM, [ = 4 (— 8mafy) (67),

where o is an imaginary cube root of unity.
2B 2
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The solution (64) corresponds to the locus of conic nodes.
In the case of the solutions (65)-(67) the tangent plane at & », {is 2 =L
Hence either of the planes z = + (— 8m®/aBy)"” touches at any given point on it

three of the surfaces of the system, viz., those whose parameters are given by the
equations

o= &+ 2ma~¥ B8, b= + 2ma=V B3,
a= ¢+ 2moa~B B b=y + 2mea"d B,
a= €&+ 2mePa~ B R b=y 4+ mea”3 B

Hence by Art. 9, B (i.), each of the factors

z + (— 8mB¥/afBy)1?

may be expected to occur three times in the discriminant,
This accounts for the presence of the factors

{2+ (= 8m%[aBy)*} . {z — (— 8md[aBy)"}?

v.e.,

(2 + smdfafy)

in the discriminant.

Art. 11.—To prove that of B=10 be the equation of the Biplanar Node Locus,
A contains B as a fuctor in general.

Let & m, { be a point on the biplanar node locus. Then equations (11)-(14), (41),
(42) are satisfied.

The argument of the preceding article applies so far as A and its first differential
coefficients are concerned.

But further the values of 8°A/0x® 9°A/0x 9y, given by (56), (57) vanish, in virtue of
the above mentioned equations, except in the case (to be considered presently) where
the substitutions & = §, y = », 2 = { make

e
Da, > Db, | _. 0
Dla,,b] 7
ne.,

D ([ [81] _
B gl =0 (68,

From the symmetry of the variables it follows that all the other second differential

coefficients of A also vanish when & = £y =, 2 = { (or the same results follow by
Art. 1, Preliminary Theorem A).

Hence by Art. 1, Preliminary Theorem B, it follows that A contains B? as a factor.
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Example 5.—Locus of Biplanar Nodes.
Let the surfaces be

a(w——‘a)?’—l— a(y —bP +6m(x—a—2)(y—>b—2) =0,

where «, m are fixed constants; a, b the arbitrary parameters.

(A.) The Discriminont.

With the notation of the last article, the discriminant is the same as that of the
equation

aX3 + aY? 4 6m (X — 2Z) (Y —2Z)Z = 0.
Therefore

S = 2m%a%? — mt
T = 36mPate* — 64m3a® + 24mia¥?® — 8m?.

A = 16m*e®® (9az + 4m) (3a%e* — 6maz 4 4m?)>.

(B.) The Biplanar Node Locus is z = 0.

Transforming the equation by the substitutions t=a 4+ X, y=04+Y, 2 =17, it
becomes

aX®+ oY+ 6m (X — Z) (Y - Z) = 0.

Hence the new origin is a biplanar node on the surface.

Hence z = 0 is the locus
of biplanar nodes.

(C.) (i.) The Ordinary Envelope is 9az + 4m = 0.

(ii.) The Envelope such that every point on it is the point of contact of two
non-consecutive Surfoces vs 8a%* — 6moz + 4in? =

To prove these statements it is necessary to find the tangent planes parallel to the
plane z = 0.

Hence it is necessary to have

f=0, DffDe=0, DffDy=0, Df/Dz=0,

1.e.,
a(@—aP+a(y—0P@+6m@—a—2)(y—>b—2)=0 . . (69)
a(t—a)l 4 2m(y — b —2) =0 . . (70).
a(y —bP +2m(x —a —2) =0 . . (71).

x—a—2z24+y—b—2 F0 .. (72),
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From (70) and (71) either
x—a=y-—0b . . . . . . . . . (73),

or

af@w—a)faly—>)=2m. . . . . . . . (74)

(i.) Taking (73), and eliminating z and (y — b) from it and (69), (70), it follows

that
(2 — a)®(x — a4+ 4m/3a) = 0.

Now, if & — a = 0, then y — b= 0 by (73), and z == 0 by (69).
Hence (72) is not satisfied. This solution corresponds to the biplanar node locus.

But if ‘
& — o= — 4m/3a,

and
z = — 4m/9a by (70).

These values satisfy (69)-(72).
Hence z = — 4m/9« is an envelope. Kach point &%, — 4m/9a on it is the point of
contact of one surface of the system whose parameters are

a= &4 4m/3a, b= 4m/3a.

Hence 90z 4+ 4m = 0 is an ordinary envelope.
- (ii.) Taking (74), and eliminating (x — o) and (y — b) from it and (69), (70), it
follows that ’
Ba%? — 6moz + dm* =0 . . . . . . . . (75).

The corresponding values of (z — a), (y — b) are determined by (74) and
a(x — a) — 2m (x — a) — 2mz -+ 4m’/a = 0.

These values satisfy (69)—(73). _
Hence each point &, %, { on the imaginary locus (75) is the point of contact of two
surfaces of the system, whose parameters o, b are determined by the equations

o (§ — a)® — 2ma (§ — a) — 2maf + 4m? =0,
a(f——o&)—l—a(n——b)-—-Qm =0,
where  is one of the roots of (75).
This accounts for the factor
(80%? — 6maz + 4m?)?

in the discriminant,
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Art. 12.—To prove that if U = 0 be the equation of the Locus of Uniplanar Nodes,
A contarns U® as a factor wn general.

(A.) Amongst the conditions satisfied at every point of the uniplanar node locus,
will be found the following, see the ratios (48) :—

[@,«][B, B] — [0 BF=0. . . . . . . . (76).

Now, by Art. 1, Preliminary Theorem C, this means that the equations
Df/Da = 0, Df/Db =0

are satisfied by two systems of values of the parameters which become equal when
x =& y=mn, 2= { the coordinates of a point on the uniplanar node locus.

~ [It must be remembered that the theorem has to be specially interpreted for the case
in which Df/Da, Df/Db are both of the first degree in a, b, i.e., for the case in which
fis of the second degree in @, b. This is done in Section I'V.].

Now this is the case previously reserved in Art. 7, Art. 9 (the second case of
exception), and Art. 11 (condition (68)).

As there are, in this case, two equal values of each of the parameters, a, b, 1t may
be expected that there will be two (not necessarily equal) values of 0a/ow, 9b/0z.

It will appear presently that in some cases da/ox, 0b/ox may become infinite, but
this is not the case for the uniplanar node locus, in which the values of 0a,/0x, 0b,/0x
as given by (52), become indeterminate, because the conditions (48) are satisfied.

Differentiating (52) again with regard to a, it follows that

0
[, @, a,] + 2[=, a,, “1] a L+ 2(x, ay, 1] a L [ags ayg, o] < a1>
O, ob, . 0%, 0% .
+ 20 a0 (5) (3) + oo b () + Lo a—,j;+[al,bﬂg; =0. (),
S Oa, ’ Oa,
[w, €, bl] + 2 [m, s bl] _a_m + 2 [93, bl: bl] a [061, Ay, 1] ( >
da .
20y by, 001 () (2) o 00 b0 (1) + T D1 52 # [0 2152 =0 - (75).

~ Multiplying (77) by [b,, b,], (78) by [y, b,], subtracting, putting z = & y =, 2= {,
and therefore a, = «, b, = 3, and using (76), it follows that :
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[€ & o] [B, B1—[& & B[ B8]
+ 235 {[& o ][, B = [& o B] [« BT} + Zag {[& o BI[B, Bl —[& B, B[ Bl}

+ (5 fln o 118 81 = [, 81 [=, BT
+2(53) () o B1 18, 81 = [, 8, 811, £}
+ () s B BB B (BB BBl =0 . . . . . (),

and this equation with either of the equations derived from (52) by changing therein
@ into & y into 7, z into {, and therefore ; into «, b, into B, determines in general two
values for 0«/0&, and two corresponding values for 95/0&.

The second of equations (52) gives

Oa 0
(8 €1+ [ Bl + (BBl gz =0 . . . . . . (s0)
Eliminating 98/0¢ between (79) and (80), it follows that

(55 | (-1 (8.8 =3[, 8118 BP [, 81+5 %8, 81 8.6) [ £ P[5, 5.1 [ 7 |

o2 |[6:% <108, BP — 2[£, BB, AT [« £] + [£. . BI[B. £][ B 1
% — (s, B1[B,AT[8, €1+ 2L, 6, BB, £1[ B1[6. €1 8.8, £1[w, BF[8, €]

[E, g’ OL] [:B: 18]3 - [5, 5, 18] [B) /3]2 [(1, 18]
+ | —2[&a, BI[EB][B, BT + 2[£ B, Bl BB, Bl B]
+ [6AP[n B BB~ [6APIB. A BB |=0 . . . . (s1)

This is in general a quadratic for oa/o¢.

The two corresponding values of 98/0¢ are given by (80).

The case of exception, when the quadratic for de/o€ reduces to an equation of the
first degree, viz., when ’

[ @, &1[8, BF—3 [, @, BI[B, BPLx, A1+ 3 [ B, B1LA, Bl [ B — [B, B, B] [, B=0,

will now be considered.
(B) The meaning of the condition may be determined by means of Art 1, Pre-
iminary Theorem D.
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Put therein ¢ (u, v) = Df/Du, ¢ (v, v) = Df/Dw.
Then the condition of Preliminary Theorem C, which also holds, is

DYDY (DN
Du? Dv? Du Do ’

The condition of Preliminary Theorem D is equivalent to
Dy Dy N _ o, DY Dy Dy, DY (DYDY
D \Du Do Du? Dy Du Do Dug+ Du Dov® \Du? <Dvg
L[ (D, Dy DF DY Dy D\ DY
T | Du? Do \De? DuDv® Dv® DuDv ' Do \Du Dy J DuDv/ "

Dividing out by (D%/Du Dv)? the last equation becomes, by the preceding,

D77y _ g Dy DY (DY, DY (DYDY DYDYV
Du? \Dv? Du? Dy Du Do &sz + Du Dv? <Du Dv/ Dv*  Do? \DuDuy ’

Now in the former part of this article, & and B correspond to u and v.
Hence the condition that the equations Df/Da = 0, Df/Db = 0 may have three

coinciding systems of common roots is

[, @, @] [B, BF — 3 [et, o, B] [B, BT [, B]+3 [, B, BI[B, Bl [, BF—[B. B, Bl[ BF=

This fact must be taken account of in forming the discriminant, and the whole of
the work must be modified in accordance with it. But this case will not be further

discussed.
(C.) It has now been shown how to determine the values of dw/dx, db/ox, when

x=§& y=m,2={ the coordinates of a point on the uniplanar node locus.

Now, whenzx = & y =, z = {,

o (1,9, 2 a,b)

f(.%’, Y, %, Oy b]): o
both vanish.
Ff (w,y,za,b) 0 (0f(z,92a,b)
e T o ( ow )
_ 0 (Df(=y5a,0)
— 0o\ Dz )

Oa, I
= ]:{L‘, 96] -+ [9(), OLJ a% -+ [w, ()1] a;l

Hence when x = &, y =9, 2= {,
MDCCCXCII,—A. 2 ¢
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azf@’%%ﬂl;bl) becomes [€, €] + [&, «] g*g. + [£ 8] gg

[& £] Out - 0
e 81+ [w B 418 Bl 5} by (49)

therefore 0°f (x, v, 2, @y, b,)/0x* vanishes by (80).

In like manner 0% (z, y, 2, a,, b,)/02? also vanishes when « = & y =n, 2 = (.

Now writing A = Rf) f; for brevity, and forming all the differential coefficients up
to the fifth order inclusive, each term in any of these differential coefficients is the
product of terms, one of which is f] or f; or a first or second differential coefficient

of f; or f;. :
Hence when @ = &, y = 5, z = {, all the differential coefficients up to the fifth order
vanish, and, therefore, by Art. 1, Preliminary Theorem B, A containg U® as a factor.

Example 6.— Locus of Uniplanar Nodes,

Let the surfaces ba
w(w—a) + By —bp +3[cle—a)+yf =0

where a, 8, ¢, g are fixed constants; @, b the arbitrary parameters.

(A.) The Discriminant.

The discriminant is the same as that of the equation

aX?® + BY? + 3Z (¢X + gzZ)* = 0.
Hence
S =0

T = afy*® (Yagz — 4¢%)
A = a?Blgb8 (Qagz — 4c)%

(B.) The Locus of Unodes is z = 0.
For putting « = a 4+ X, y =b + Y, 2z = Z, the equation becomes
aX3 4 BY? 4 8 (¢X + ¢gZ)? = 0.

Hence the new origin is a unode. There are no other singular points on the
surface.
Hence the locus of unodes is z = 0.

(C.) The Envelope such that every point on it is the point of contact of two non-
consecutive Surfuces is Yagz — 4¢3 = 0.

To prove this it is necessary to find the tangent planes parallel to z = 0.
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Hence it is necessary to find @, v, 2, so that

f=a@—aP + By —0P+3[c(z—a)4+9:f=0. . . (82),
% %)—‘E = a(x—a) + 2¢[c(x— a) + g2] =0 . . . (83),
Dy - ’
V= py— o =0 .. ()
Y = 2g[e (e~ ) + g =0 . . . (85)
Therefore
y=1"
o(x—a) +38[c(x—a)+ gz =0,
a(x—a)+ 2¢clc(x—a)+gz]=0;
therefore

le (@ — a) + gz] [e (x — a) + 3¢2] = 0.

The solution ¢ (# — @) 4+ ¢gz = 0 is inconsistent with (85).
Hence it is necessary to take

¢(x —a)+ 3g2=0.
Substituting in (83),

g%, .
g (VYgaz — 4¢*) = 0.

The solution z = 0, gives » == @, y = b, and therefore belongs to the unode locus.
The selution 9gaz — 4¢% = 0
gives
_ a (v —a) + 2¢* (. — a) 4+ 8¢*/9a = 0,
and therefore
= = — 4%/,

or
& — a = — 2°[3e.

Hence at every point & 7, 4¢}/9ge on this locus, the locus is touched by two non-
consecutive surfaces of the system, viz., those whose parameters are given by

a =&+ 4¢*/3a, b=n;
and
@ = &+ 2¢%/3a, b=
This accounts for the factor
' (9goz — 4c)?
in the diseriminant.
2¢2
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Example 7.— Locus of Unaplanar Nodes.

- Let the surfaces be
a(@—af + By — b —3n(z— ax + by)* = 0,

where «, B, n are fixed constants, and a, b are the arbitrary parameters.

(A.) The Discriminant.
Putting { =2 — «® 4 ?, the equation is

a(x—aP+BHy—0P—=38n{{+x(®—a)—y(ly—>0)}=0.
Hence the discriminant is the same as that of the eq_uatidn

aX? -+ BY? — 8nZ ({Z + X — yY)? = 0.
Therefore
S = n*afay®
T = 9n?%B* + 4nPaBE (Br® — ay?),
Therefore

A = Wt B [{9aBL + 4n (B’ — ay®)}? + 64n*afaiy’],

In order to show the way in which the factor {0 arises in the discriminant, the dis-
criminant will now be calculated.

Tt is known to be the result of eliminating X, Y, Z from D/DX = 0, Df/DY = 0,
Df/DZ = 0, v.e., from

aX? — 202 ({4 + X —yY)=0 . . . . . . (86),
BY? 4 2nyZ ({Z + aX — yY)==0 . . . . . . (87),
(Z4aX —yY)(BlZ +aX —yY)=0 . . . . (88).

From (86) and (87)
Yzix,\/<—-%), C L (89)

/

Substituting in (86)

Put
w—y\/<-—%‘%>:=§, m+y«/<-%§>=n»
Then two of the values of X/Z are found from

aX? — 20w XZ — 2nxlZP=0 . . . . . . . (90),
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Y=+X«/<—%}L> C e (91);

and the remaining two values from

aX? — 2nanXZ — 2nxlZ? =0 . . e .. (92),

Y:-Xxdwg>y N CE)

Take the factors of the left-hand side of (88) separately, and form first of all the
part of the discriminant depending on

and then

and then

Z + X — yY,
Let the roots of (90) be X,/Z, and X,/Z,; then the corresponding values of Y by
(91) are
xy il
X, ,\/<—— Bﬂﬂ) and X, /\/<-— Bx>
Hence

({2, + =X, — yYy) ({Z,y 4 X, —yY,)
= ({Z, + €X,)) ({Z, + £X,)

— ’ (X X 2 X1 Xy
=22, (0+ & (5 + ) + €55
= Z,Zy ({).
‘In like manner, taking the roots corresponding to (92) and (93),
(425 + X5 — yY,) (lZy + =Xy — yY,) = 2,7,

Next, taking the other factor of the left-hand side of (88), the part of the dis-
criminant corresponding to the roots of (90) and (91) is

(38Z) + 2X| — yYy) (82, + X, — yY,)
= (3{Z, + £X,) (32, + £X,)
X X X, X
=22, (90 + 36 (5 + ) + £57)
= 2 (s + 25,
In like manner the roots of (92) and (93) give rise to the following part of the

discriminant :—

7,7, (90 + ﬁf@
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Hence the roots of (90) and (91) give rise to the portion
vy e o dna N\
(ZZ)y (90 + 75 ) e,
and the roots of (92) and (93) to

CrEOPE \D dpan? o
(Z,2.) <9‘: + _,l‘,,l,) £

Hence the discriminant is

o

P 9 16022 22
(2,2, 2,2 ) <8] o4 M_“_% (& + o) + .,__J%_g____>

= (2,2, 2,2, )°(° <81€° + /JLE (B — ey) +- 16n2 (B2 + aJa)z)

«*3?
= (" e 5988L 4 dn (657 — ay S Gty

This agrees with the result previously stated.
Returning now to the part of the discriminant arising from the two systems of roots

of (90) and (91), it will be shown that the factor {* arises entirely from one of the
systems only.

Consider, in fact,

(02, + aX, —yY,) (804, + 2K, — yY)),

which is the part of the discriminant due to the system of roots X, Y|, Z,.
It 18 equal to

(L2, + EX) (3L + £Xy) = Z° {30 + 460(X,/2,) + & (X)/Z,)}
where
w (X /2, — 2nxé (X [4,) — 2nal = 0.

Therefore

({7, + aX, — oY) (3L4, + xX, ~ yY, ::/ﬁiggz :“£€§+ X (4§§+ g@z;%}

7\
Now,
D ORI 7 SNV (U e
g= 4
£y $ o
S 3 PRI S i
o o - 770552 2 %szg; n e3§6 o o ,4

If the root corresponding to the positive sign be taken, then

(L2 4 Xy — yYy) (82, + wXy ~y¥))
is not divisible by .
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If, however, the root corresponding to the negative sign be taken, .e.,

X1 _ ¢ 1 fié’z‘ . ﬁ
- {E 72;(7253 + 577/2{26955 .. 5}

7=

then
(Czl + 2X, — le) (884, + «X, — ?/Yl)

— 72 % o sntainine hicher .
= 7, i 4 terms containing higher powers of C}
Hence the factor {3 arises exclusively from the substitution in f of one system of

values of the parameters satisfying both the equations Df/Da = 0, Df/Db = 0.
A similar demonstration shows that the solution

Sy ]

- 2y 7 wam® 2 pXdap
and
% ay

will also give rise to the factor {3 ,
Now it will be shown presently that { = 0 is the unode locus. Hence at any point
on the unode locus;

N
N
&

Hence, at such a point there are two values of @ — a and two of y — b which
vanish. Hence two systems of values of ¢, b, satisfying both the equations Df/Da =90,
Df/Db = 0 become equal ; viz., the two values of the parameter o become equal to
the x-coordinate of the point, and the two values of the parameter b become equal
to the y-coordinate of the point.

(B.) The Locus of Uniplanar Nodes is { = 0.
To find the singular points, it is necessary to find values of x, y; 2 satisfying all the
equations
a(r—a) 4 B(y —b)® — 3n(z — ax + by)* = 0,
a(x — a)® -+ 2na (z — ax + by) ‘ =0,
B (y — D) — 2nb (z — ax + by) =0,
z — ax + by =

The only solutions of which are
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Now, transforming the equation by means of the substitutions & = a + X,
y=0b4Y,z=0a®— b+ Z, it becomes

aX? -+ BY? — 3n (Z — aX + bY)* = 0.

Hence, the new origin is a unode:
Hence the locus of unodes is z = 2* = 4%, w.e;, { = 0.

(C.) The Envelope Locus is
$9aBL + 4n (B = ay®)}? + 64aBn®ePy* =0 . . . . (94)

On examining the manner in which the discriminant was formed it can be seen
that the factor corresponding to the envelope focus is obtained from (86), (87), and
3(7 + «X — yY = 0.

Hence it is the result of eliminating X, Y; Z from

Zi+ aX —yY = — 20Z
aX®pdnelZP= 0 » . . . . . . . (95).
BY? — dnylZP = 0

To prove that (94) is an envelope locus, it is necessary to show that if ¢ be the
left-hand side of (94), and /= 0 be the equation of the system of surfaces, then it is
possible to find values of «, ¥, z which satisfy at the same time all the equations—

Df jo¢ _ D7 o6 _ D fob
D/ 0z~ Dyl oy — D2/ oz J

(96).

Changing the independent variables from z, v, # to @, ¥, {, then, if & denote partial
differentiation when , , { are independent variables, equations (96) are equivalent to

f=10, ¢=0
o 1o _ O [Bp _ o /5%
saf Se T Syl Sy T 8 &2
e
Bau(z—0a) —6n (22 —a)[+ (xr —a)z — (y —0) y]
24nBx* [9aBE + 4n (Ba® — ay®)] + 192n°xBa*y’
3y —by +6n(2y~0)[f+ @ —a)e—(y—=b)y]
— 24nay? [92BE + 4n (Br® — ay®)] + 1920%«Bxy*
_ [l ta@—a)—y@y—0b],
1828[9B¢ + 4n (B2 — ay®)]
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or, putting  —a =X/Z4, y—b=Y/Z,

aX? — 2n (2Z + X) (§Z + X — yY)
24nBa* [9aBE + 4n (B2 + ay®)]
_ BY 4 2yl + Y) (87 + X — yY)
—_ 247Zay2 [Qaﬁé’ — 4n (8;1;3 -+ uyii)]
= 20/ (§Z + 2X — yY)
T 18aB [YaBE + 4n (B — ay)]”

It will now be shown that the values of x, y, z which satisfy (95) also satisfy
these equations.
For substituting from (95), these equations become

X2 4 ALl +X) AV — dngZ(yZ + V)
AP [92B8¢ + 4n (B2 + ay®)] ~  — dnay®[92B8E — 4n (Br® + ap?)]
4ngz?

T 32B[94B¢ + dn (B — ap)]
These reduce further to

4ntZX . — dntZY
AnBa? [92BE + 4n(Ba® + ay®)] T — 4nay? [92BE — dn (B2 + ay’)]
. dn 72
T 3B [92B¢ + 4n (B — ayf)]’
1.e.,
X . Y
4nBe? [9aBE + 4n (Br® + ay®)] ~ 4nay® [9aBE — 4dn (B + xy*)]
7

3af3 [92B¢ -+ 4n (Bx® — agP)]

Now the relations (95) satisfy (94).
Further (94) can be written in either of the forms

[92BL + 4n (Bx® + oy®) P = 144na*BLy,
[92BL — 4n (Bx® + ay®) P = — 1440037 (a®.

Hence it is necessary to show that

' X Y V/
A8nafay / (nByl) — 48naBuy®/(— nax) — 24nafuy\/(— afBry)’

ne.,

X228 = — danl/o
Y¥Z* = Any{/B,
and these are true by (95).
Further, ¢ = 0, /'= 0 are both consequences of (95).
Hence all the equations (96) are satisfied by the same values of z, y, 2.
MDCCCXCIL—A. 2D
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Secrioy III. (Arts. 13-15).—CONSIDERATION OF THE CASES RESERVED IN THE
PREVIOUS SECTION, IN WHICH TWO SYSTEMS OF VALUES OF THE PARAMETERS
SATISFYING THE BEQUATIONS, Df/Da = 0, Df/Db = 0, COINCIDE AT A POINT ON
1k Locus o ULTIMATE INTERSECTIONS.

The interpretation of the condition

[0‘: a] [083 B] - [a, B]z =0,

which is marked (76), when the equation of the system of surfaces is of the second
degrec in the parameters, is different from its interpretation when it is of a higher
degree.

It will be supposed, in this section, that the degree of the equation of the system
of surfaces in the parameters is higher than the second.

Art. 13.—To prove that if each Surfuce of the System have Stationary Contact with
the Envelope, then A contoans 1% as a factor.

(A.) It will be shown that when the condition (76) holds in the case of an envelope
locus, the curve of intersection of the envelope with each surface of the system has a
double point at the point of contact, such that the two tangents coincide. [Such
contact is called stationary (see SALMON'S ‘Geometry of Three Dimensions,” 3rd
Edition, Arts. 204, 300).]

To prove this, it is necessary to find the direction of the tangents to the curve of
intersection of the envelope and one of the surfaces of the system at the point of
contact.

Let & 7, £, be a point on the envelope. Let the surface touching the envelope at
this point be

S @y, 20 B) =0,
which has been marked (9).

Then equations (11), (25), (26) hold.

Let & 8¢ n + 8y, { 4 8¢ be a point near to & 7, {, which lies on the curve of
intersection of the surface (9) and the envelope.

Since it is on the envelope, it will be the point of contact of one of the surfaces of
the system.

Suppose it is the point of contact of the surface (10).

Then

JEFE n+8, 048 e, B)=0 . . . . . . (97),

und the equations obtained from (11), (25), (26) by changing &, », Z, o, B into ¢ 4 8¢,
n + 8, {4 0, o+ da, B+ 3B.
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Then, from (97)

[£1(88) + [] () + [£] (80)
[& €1(36)* + [, m] (3n)* + [§ £] (8C) }
+ 2 [n, L] (Sn) (80) + 2[& €] (8) (3€) + 2[£, 7] (3¢) (3n)
+ terms of the third and higher orders =0 . . . . . . . . . . (98),

+1

and by means of the substitutions in (11), (25), (26),

S(En & e B)

+ [fl(Sf) + [] (3n) + [¢] (80) + | =] (8) -+ [B] (3B)
(&, €1 (8€)* + [, ] (3n)* + [ L1 (L)

+ 2[m, {1 (8) (80) + 2[¢ €1 (3L) (3¢) -+ 2[€, ] (3€) (3n)
+ 3|+ 2[£ o] (3¢) (8a) + 2[n, «] (8y) (8a) + 2[{, «] (8L) (3=)

+ 2[£ B] (8¢) (3B8) + 2[n, B] (n) (88) + 2[¢, B] (8L) (3B)

[ ] (32 + 2L, 8] (54) (36) + [B, B] (36)°
-+ terms of the third and higher orders=0 . . . . . . . L (99),

(] + Lo, €1 (3€) + [ m] (8m) + [, L] (8L) + [2, ] (3=) +- [, B] (3B)
+ terms of the second and higher orders =0 . . . . (100),

[8]+ [B, £1(8¢) + [B, 7] (8n) + [B, {] () + [B, #] (3«) + [B, B] (38)
+ terms of the second and higher orders =0 . . . . (101).

Making use of (11), (25), (26), (98), equations (99)~(101) become

[& ] (3¢) (82) + [, o] (3n) (3) + [¢, ] (87) (82)
+[€ B] (8¢) (38) + [, B] (3n) (3B) + &, B] (32) (3B)
+ %o o] (82) + [a, B] (3=) (38) + £[B. B] (38)
4 terms of the third and higher orders=o0 . . . . . . . . (102),

[, €1(8€) =+ [ m] (3n) + [&, L] (80) + [, @] (8) + [, B] (38)
+ terms of the second and higher orders = 0. (103),

[B, £1(3€) + (B, ] (8n) +[B, L] (38) + [B, 2] (8=) + [B, B] (88)

+ terms of the second and higher orders = 0. (104),
2D 2
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By (102), (108), and (104) it follows that

o, a] (30) + [«, B] (32) (38) + % [B, B (38)°
-+ terms of the third and higher orders = 0
Hence ultimately

[, o] (8% + 2 [, B] (82) (38) -+ [8, B] (38)° =

This determines the two values of the ratio 38/8e.
Then to determine 8¢, 8y, 8( there are the following equations obtamed from (98),
(103), (104), by retaining only the principal terms.

[E1(5€) + [n] ) + (L1 (B0 =0 . . . . . . (105),
[ €] (3€) + [ ] (5n) + [, L1 (57) + [ a] () + [=, 8] (88) = 0. (106),
(8, £] (58) + [B, 7] (8n) + [B, &1 (80) + [B, «] (52) + [B, B (38) = 0. (107).

Hence the ratios 8¢ : 8n : 8{ can be determined.

Hence the directions of the tangents to each of the branches of the curve of inter-
section of the envelope and the surface (9) can be determined.

If, now, the condition (76) hold, the two values of 88/3a become equal, and, there-
fore, the two tangents at the double point of the curve of intersection coincide, and

therefore, the contact is stationary.
Further, because in this case the values of 68/8a both become equal to

— [, &]/[e, B] = — [, B]/[B; B,
therefore (106) and (107) become

Lo, €1 (8€) + [ m] (8n) + [e, £] (30) = 0,
(B, &1 (8¢) + [B, ] (3n) + [B, L] (d9) = 0.

From these two equations and (105) it follows that the coinciding tangents at the
double point of the curve of intersection lie in the tangent planes to the surfaces

DffDa =0, Df/DB =0, f= 0.
(B.) In this case ‘
A =Rf (@, y, 2, ay, b)) f (2, y, 2, g, by)
=RLSy . o e e L (108),
BA oR D ib) |
aﬂflfz+R(D‘£‘jz+;‘1 fg). coe e . (109).

Hence A = 0, 0A/dx = 0; for f, = 0, f; = 0 at every point on the envelope locus.
Hence A contains E? as a factor.
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Example 8.—FEnvelope Locus, each Surface of the System having Stationary Contact
with the Envelope.

Let: the surfaces be
a(@—aP®+B(y—0P+3yx—a)+8(y—b)P+ 22— =0,
where «, B, v, 8, ¢ are fixed constants ; a, b the arbitrary parameters.
(A.) The Driscriminant.
It is the same as that of the equation
aX3 4 BY? + 8Z (yX + 8Y)P 4 (* — *) Z3 = 0.
Therefore
S = afyd (z* — ¢,
T=(2*— ) [a®B (2* — ¢*) + 4 (ad® — By*)?].
Therefore
A= (22— P [{@B (2 — &) + 4 (a8 — ByPP}? + 64438038 (22 — ¢?)]

(B.) The Lnvelope, such that each Surfuce has Stationary Contact with it, 18 2*—c*=0.

Transform the equation by means of the equations x=a+X, y=0+4+Y, z2=-c¢ +Z,
and it becomes

aX? 4+ BY3 + 3 (yX + 8Y ) 4 Z7 -k 2¢Z = 0.
The tangent plane at the new origin is Z = 0 ; it cuts the surface in the curve
aX? 4+ BYS + 3 (yX 4 8Y)* =0,

which has a cusp at the origin.
Hence the contact is stationary.
Hence the factor (2* — ¢2)*in the discriminant is accounted for.

(C.) The Locus
{azﬁz (zz — CQ) + 4 (“83 — B,},3)2}2 _+_ 640&3[’33)/383 (zz — 02) =0

18 an ordinary envelope.
This may be proved by finding the tangent planes parallel to the plave z = 0.
It is necessary to satisfy at the same time

w(w=af+B(y=bf +3[y(@~a)+3(y =0 +#—c'=0. (110)
a(x —a) 4 2y [y (@ = a) 4+ 8 (y=—b)] =0

By = b + 28y (x — @)+ 8y = W] =0 {. (111),

Qe =0
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From 7 the above

(o= )+ 3ty = D + (= ) =0,

therefore

y(@—a)+ 8@y —by=/(c"—2% . . . . . . (112)

Hence by (111) and (112)
X - == :]: ‘\/{__ i’y (02__ 22)1/2}

y=b=x A/ {= 5 =2}

Substituting in (112),

+y /\/{— Z—:—’ (¢? ~ 22)1/2} + 8 \/{__ %(09_ 22)3/2}__; (c2 — 22),

therefore
v 85> 478} 9 ; 9
— oL el 9 8 ikl nd 2 2\V2 e (2 L2
[=2(L+5) 20/ Bl -y = (-2,
therefore
' v & . dyd 5 )
- 2 <~“ + B/) j: Zys \/;—é o ((/ éﬂ)l/ ’
therefore

4 (y°B 4+ &a)* + 16aBy3$3 =+ 16 (1’8 + &%) o' ﬁ‘/é YR8 = 2R (c* — 2?).
Therefore |
[ (2* — ) + 4 (3B -+ &%) -+ 16aBy*0° [P == 2560By°8® (y°B + &%)
This reduces Lo

[OLQ,BQ (22 a— 02) + 4 (0(83 o 1873)2:12 + 640&5[5‘3')/353 (ZQ - (32) = 0,

This accounts for the remaining factor in the discriminant. It eorresponds to an
ordinary envelope.
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Art. 14.—To prove that +f the Conic Node Locus be also an Envelope, A contawns C3
as a factor.

(A.) It will be shown that when the condition (76) holds, in the case of a conic
node locus, then the conic node locus is also an envelope.

In this case, from (28) and (29), by means of (76), it follows that the equation of
the tangent plane to the conic node locus is

(B, &] {2 €] (X — &) + [a, 0] (Y — ) + [2 {](Z = )]
= [ ] {[B, E](X = &) + [B, 0] (Y =)+ [B {J(Z =0 =0 (113).

. This will touch the tangent cone (33) at the conic node, if

[£€] [€Em] [£,] [B,o][e,&] =[] [B, €]
[7:€] [7,7] [, ] [B,e][e,n]—[e,0][B.m]
[4,€] [¢m] [¢,¢] [8,e] [, {]— [, 2] [B,{]

(Bl | [[Ballan] | [(Bellwd] | .
|—[wal[BE]] | —[ma][Bm]] |—[na]lBL) | =

(114).

" This can be written

[8,a] |[& £] eq [ [, £]
[, €] [ m] [, L] [, 7]
% €] 2, ) 2, 4] [, {]

~

<

[(Ballé] | [[Balmy] | [Belsd | [(Beloa |
l—MﬂMﬂH—@@WﬂH—MMMGH—M@W@

—[a, 2] |[§ €] [€ 7] [¢ (] (8, €]
[, €] (s m] [, {1 (B, 7]
[¢ €] (¢ ] [¢, (] (B, {]

é([Ba 0‘] [0‘5 f] ]l> ”:18: “] [“a "7]
|— [ a] [8 €] |—[wa][B 7]

(Ballw ] | ([8a1[= 8] |
w182 1= w108 A | = 0
(115).

[ —

For the constituent in the fourth row and column of the last determinant vanishes
by (76); and the constituent in the fourth row and column of the preceding
determinant is identically zero. ’

Hence the condition becomes
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o DALEL [l [E), )
B = e b o)

- D {[E7, 1], [&], [«
—2[B, o] [a, o] D {[£], [1]), [£], [=]}

D A&, & B}

» D A{[E] 2] [E). (8]} _
+ [a, a] D17 ¢ B =0 . . . . . . (116)

And this is satisfied, because (30)—(32) hold.

Hence if (76) hold, the tangent plane to the conic node locus touches the tangent
cone at the conic node.

Therefore the conic node locus is also an envelope.

(B.) Conversely, if the tangent plane to the conic node locus always touch the
tangent cone at the conic node, thien ‘the condition

[a, a] [i8> 18] - r”‘a‘ BF=0

is satisfied at every point of the couic node locus.

To determine the position of the tangent plane to the conic node locus, it is
sufficient to eliminate dx, 88 from any three of the equations (16), (17), (18), (28),
(29), and then to use the relations (27).

Suppose that the values of 8§, &y, 8, which satisfy (16), (17), (18), (28), (29), are

8 = N\ S + N\, OB
o = py St + py 8B .o coe e (117,
8 = v, da + v, 6B

Then the tangent plane to the conic node locus is
(X = &) (mvp — pava) 4+ (Y — ) (mhy — mp)y) + (Z = ) (Mpy = Agpy) = 0 . (118).

The condition that this may touch the tangent cone (33) is

[€ €] [, €] !C £] K1Yy oty ‘
[€ 7] [, %] [Lm] =)
L& ] [, {] 1. ¢] Aty — Agpty
e O e Y S 0 =0. (119).

It will now be proved that the same condition can be obtained by substituting the
values of (3§), (8y), (8() from (117) in
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[& E1(8€)* + [, n] (8n)* +[L, £1(8¢)
+ 2[n, {J(8) (88) + 2[& €1(80) (3&) +2[£7](8¢) (Bn) =0. . (120),

and then making the roots of the resulting quadratic in 8a/38 equal.
For making the substitution, the result is

(Ba) {[& EINZ F+ [l + (L v 4 2 [, pry + 208 Elv 4 2[€ 7] M}

o LEEINN A [ ] s + [ L vy
,~+ [, {] (P«le + l’v%”l) + [ €] (lez + szl) + [5, 7] ()\1“2 + )\QM)_

+ (86)2 {[f, ﬂ >\22 + [’7’ ”’l] M22+ [é’ C] vy’ +2 [77’ C] vy + 2 [C f] vohy + 2 ['f, 7)] )‘Wz} =0.

+ 2 (32) (38)

Now putting .
Ly =[& &N + [En]m + €

M, = [ &N+ [n]p + [0 v,
N, =[§ €N+ Gl + [ Lw,

and similar expressions for L,, My, N,, the condition for equal roots can be written

MLy + g My + Ny MLy A+ My 2N
| AL + peMy 4+ Ny MLy + poMy -+ 2Ny | = 0.

It remains to show that this will be satisfied if (119) be satisfied.
Now

| (€ €] (1, €] 14 €] PV = ¥y Nopov 0fF
(€ ] [, ] (& ] viAg — A « Ay py vy O
_ (€ C] (1, ] 14 ] Mg — My 0 0
pive = pavy A — phy Mpg — Mgy 0 0 0 1
1, M, N, 0 N v O
_ L, M, N, 0 « Ny pmg vy O
(¢ €] (& ] GO e — 0 10
Pave — Ho¥1 Vilg = mdp Mg — Mgy 0 0 0 1
MLy + My 4 o Ny MLy + My + 9N N, 0
_ ALy + poMy + 2Ny MLy + pMy + N, N, 0
B Ny N, ke Ay — Agphy
0 0 Mg = Aoty 0

2 MLy + My + o Ny MLy + My + 9N
ALy + pMy + o, N ALy 4 poM, + 9N,
MDCCCXCIL.—A. Zm

= - (All“z - XQJ"I)
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Hence dividing out by (A — M, )%, it follows that the left-hand side of equation
(119) is equal to

ML 4o My 42 Ny MLy - g M v N,
MLy oMy 4 v Ny MLy 4 oMy v, N

|

Hence if the left-hand side of equation (119) vanish, so also does

B

l ML+ p My 4w Ny MLy + M, 49N,
MLy A oM 4 Ny MLy - pM, + N

which was to be shown,
- Hence either method of proceeding will lead to the condition that the tangent
plane to the conic node locus should touch the tangent cone at the conic node.

The second method being simpler in this case will now be adopted.

Multiply (16) by 8& (17) by &y, (18) by 84, (28) by — (8a), (29) by — &8,
and add.

Hence

[£,E1(06) +[m,m](8n)* + [, E1(8)* + 2, L1 (39) (3C) + 2[4, £1(38) 8¢) + 2 [ €, n(8¢) (87)
= [ ] (8) + 2 [, B](32) (36) + [, B] (38)"

Hence the result of substituting the values of 8¢, 89, 8, which satisfy (16), (17),
(18), (28), (29) in (120) is

[, ] (80 + 2 [, 8] (32) (38) + (8, B] (38)° = .

Forming the condition that the roots of this quadratic in 8a/88 should be equal, it
follows that

[, 2][B. B] = [« BF = 0.

It will be proved in Art. 27 (see the equations (196)) that the common tangent line
to the conic node and the conic node locus is in this case given by the equations

[, €1(X = &) + [ 9] (Y =) + [ (] (Z— ) = 0,
[8,€1(X — £) + [B, 1] (Y = n) +[B, L] (Z = ) =o.

Hence the common tangent line to the conic node and the conie node locus lies on
the tangent planes to the surfaces Df/De = 0, Df/DB = 0; and it lies obvicusly on
the tangent cone to the surface /= 0.

(C.) In this case equations (108) and (109) hold.

Also differentiating (109)



AND LINES IN THE INTERSECTIONS OF A SYSTEM OF SURFACES. 211

PA PR D/, D/,
o= Aner[ A 4 AT

(VA D DY@,
2\ Da? DwDal oz ' DaDb Oz

+ R +25555;; .o o (121).
D% DY Dy db,
+A4 <D'L2 T ]).TDa aac DaDb, 8;7(:>

Substituting the values of 0w, /ox, 0b,/0x from (52), there is in BQA/aac'* the term

el lmal [m0) |
; , a, by

RA | o] [aa] [ob)] /t&bjébf!
(@, by] [ay, b)] [by, bl] b b

which requires examination when z = & y =9, 2 = {, the coordinates of a point on
the conic node locus.

Now in this case a,, b; are roots of Df}/Da, = 0, Df,/Db, = 0.

Hence

[ €] (82) + [ 7] (8n) + [ L] (80) + [, ] (8) + [, B] (3B)
~+ terms of the second and higher orders in 8¢, 8y, 8, 8¢, 68 =10 . (122)

[B. £1(8¢) + B, m] (om) + [B, L] (8) + [B, «] (82) + [B, B] (38)
- terms of the second and higher orders in 8, &y, 8, 8, 68 =10 . (123).

Multiply (122) by [«, 8,], (123) by [«, a] and subtract, the terms of the first order
in 8, 88 disappear, and the equation obtained is of the form :—

(terms of the first order in 3¢, &y, SC)
- (terms of the second and higher orders in 8¢, &y, 8¢, 82, 8B8) = 0.

Hence if 8¢, 8y, 8 are of the order of the infinitely small quantity e; then S, 58
are of the order of ¢,

Hence the principal terms in (122) and (123) are [&, «] (8a) + [«, 8] 88 and
[B, « | (8a) -+ [B, B] (88) respectively. 4

Moreover by (122) and (123), although 8u, 88 are of the order €, yet :
[, @] 8e + [«, B] 8B being ultimately equal to — {[a, &] (8&) ~+ [, 3] & ~+ [=, {] 80>
is of the order e

Similarly [8, o] 8a -+ [B, 8] 88 is of the order e,

282
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Next, when e =§ y=mn, 2= {, a,=a+ 6, b, = 8 + 38/,
S, v, 2, a,, b)) becomes

S(Em, Lo B)

+ [£1(88) + [n] (8n) + [ L] (88) + [«] (8«) + [ B] (38)
(& €] (B€) + Lm, m] () + & £](80)° !
+2[n, L] (3n) (30) + 2 [&, €] (58) (86)+ 2[& 1 (8¢) (8n)
+ 2 (8a') {[€, ] (35) + [, o] (59) + [, ] (80)} |
+ 2 (88) {[& Bl (88) + [, Bl (n) + [ B] (30)}

A Lo ] (3e) 42 [, B] () (38') +[B, B] (88)’

-+ terms of the third and higher orders in 8¢, o, 8, 6, 38’

-+
WO

= (terms of the second order in 8¢, &y, 8()
4 (8') (terms of the first order in &€, &y, 8()
(8/8') (terms of the first order in 8¢, &y, 84)

5 [;“; {[2, ] (8) + [, B] 88’3
-+ terms of the third and higher orders in 8¢, &, 8¢, 8«', 88,

Now, the terms of the second order in 8¢, 8y, 8¢ are of order €

The terms containing 8o’ or 88, multiplied by terms of the first order in 3¢, &, 8¢,
are of order 63/2

The terms 5 ] f[a, ] (8a) + [a, B] 68'}% are of order € since

[o, o] (8a') + [a ,8] (8B) is of order € by the same argument as the one which was
applied to show that [a, «] (82) + [, 8] (88) was of order e.

The most important terms of the third and higher orders in 8&, &y, 8, 82/, 88" are
of order €

Hence f(x, 9, 2, ay, by) is of order €2, when & = §, y = », 2 = {, the coordinates of
a point on the conic node locus.

Further
Lo, o] [e, B1] |
e, B[ 0]

becomes

[“s “J [a’ BJ 1

(e, B1[B, B]| 5
+{(85)]§)§+ (3’7) +(80) ) e+ (8%) ), + (9F) Uﬁ} E”‘ ;} EZ’, B}

+ terms of the second and higher orders in 8¢, 8y, 8, 8a, 8B.

D




AND LINES IN THE INTERSECTIONS OF A SYSTEM OF SURFACES.

Hence, when x = & y =, 2 = (,
Loy ay] [ay, by]
Lay by] [0y, 0]

18 of order e!*,
Hence
Loy, ay] [ay, by

J‘z/ Ly, by [0, 0]

is of order ¢, and therefore vanishes at points on the conic node locus.
Similarly it can be shown that the term

7 / [y, aty] [t 0y ]

/ [, B3] [by, 0,]
vanishes at points on the conic node locus.

Therefore A, 0A/0x, 0°A/0x® all vanish on the conic node locus.
Therefore A contains C? as a factor.

Example 9.—Conic Node Locus which vs also an Enwvelope.
F

Let the surfaces be
a(e—a) +3B8(y — b+ 3y(x—a)z+ 62> = 0,

where a, B, y, 6 are fixed constants ; a, b the arbitrary parameters.

(A.) The Discriminant.
It is the same as that of the equation
aX3 4 3BY?Z + 8y2XZ? 4 82273 = 0.

Therefore
S = afyz,

T = 4a28° &2
Therefore
A = 1663B%° (ad% + 4°).

B.) The Conve Node Locus, which is also an Envelope, 1s z = 0,
e,

213

To prove this, transform the equation by means of s = a0 + X, y = b+ Y, 2= Z.

It becomes

aX8 4 3BY? + 3yXZ + 872 = 0.

Hence the new origin is a conic node, and one of the tangent planes of the conic

node is Z'= 0.
Hence the conic node locus is z = 0, and it is also an envelope,
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(C.) The Locus ad*z + 4y® = 0 1s an Ordinary Envelope.

This can be proved by finding the tangent planes parallel to z == 0.
Hence it is necessary to satisfy at the same time

w (o= af + 880 — 0 + 3y (@ —a)z + 82 =0,

o (2 — a)® -+ yz =0,
y=b = 0,
By (x — a) 4+ 2 8 =0 . . . (124)
Henee
y =
therefore
afx —a)® 4+ 3y (@ —a)z 4 62° = 0,
(:Jc — ) 4 yz = 0.
Heunce
2y (% == )z -} 82 = Q.

The solution z == 0 of the last equation makes « = ¢, and does not satisfy (124).
Hence it is necessary to take
2y (x — a) + oz = 0.
This gives
ad% + dy® = 0.
Hence, when
&€= nyg/’ag, Y = Z’), 2 I e 4)/3/“8‘35

the tangent plane is parallel to the plane z == 0. It touches all the surfaces of the
system,

Hence o
pmm e Ayl

is an ordinary envelope.

Art. 15.—7T0 prove that if the Edge of the Biplanir Node always touch the Biplonar
Node Locus, then A contains B* as a fucter.

(A.) It will be shown that when the condition (76) holds in the case of a biplanar
node locus, then the edge of the biplanar node always touches the biplanar node loeus.

The equation of the biplanes 1s given by (33).

Now, if the left-hand side of (33) breank up into two linear factors, then the two
planes, whose equations arve given by equating the two linear factors to zero, will
intersect in the straight line whose equations are given by any two of the three
equations -—
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EEI(X =6+ [E] (Y —n)+[E(Z~ =0,
[0, E1(X = &)+ ] (Y —n) + [0 (Z—{) =0,
GEX =)+ LY =)+ [L0EZ—=0=0 . . . (125)

To find the tangeunt plane to the binode locus, proceed thus :—
The condition (41) gives
L& €] [ 2] [B, B] — [« BT} <
—[& ] [B, Bl +2[& «][& Bl [« B] —[& B [w a] =0,

which, by means of (76), can be written

[ o [a, BP — 2[£ 2] [£ B] [, B [, «] + [& BP [« oF = 0.

Therefore
(€ o] [«, B] —[& B][=, «] = 0.
Similarly .
[, ] [&, B] — [, B] [, @] = 0,
[{ ] [e, B] —[L B][e, o] = 0.
Hence
(£ o] _[moa]l _ [§a] _ [#a] _ [B 4]
58T B T 58 w8l [8R " - (126)

Now, multiplying (16) by [5, o], (17) by [€, o] and subtracting

[y o] {[€ €1 (3€) + [& ] (8n) +[£ L] (30)}
—[& a] {[n, €] (3€) + [, n] () + [n, £] (30)3
+ (98) {[n, ] [& B] —[n, BI[E 2]} = 0.

Now, by (126), the coeflicient of 88 vanishes, and the equation of the tangent
plane to the binode locus is

[9, e {[E (X — &)+ [En] (Y —n) + [ (Z =)}
— [l X =)+ ] (Y =)+ dEZ-=0=0 . (127).

Hence the tangent plane to the binode locus passes through the intersection of
two of the planes (125), and, therefore, through the edge of the binode.

Hence the edge of the binode always touches the binode locus.

It may be noticed, further, with respect to the edge of the binode, since equations
(28) and (29) depend on (16) and (17), that since it is the intersection of the planes
(125) it lies also on the planes .
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[, €](X — &) + [ [ (Y —m) + [o, (J(Z = () = 0,
(B, €] (X — &) + [Bn] (Y —n) + (B, {](Z~{) =0

(These planes, it may be noted, coincide In this case by (126).)

Hence the edge lies on the tangent planes to the surfaces Df/Da = 0, Df/DB =0,
and it is obviously a tangent to the surface f = 0.

(B.) Conversely, if the edge of the binode always touches the binode locus, then
the condition (76) holds at every point of the binode locus.

The equation of the edge is given by any two of the three equations (125).

Hence, if the edge is a tangent line to the locus of binodes, the equations (125) will
be satisfied by putting

X=§648 Y=9+0oy, Z=10438

the coordinates of a binode near to & %, {, which lies on the edge of the first binode
and infinitely near to it.

Hence
0
0, o .. (128).
o

I

[€ €1(3€) + [&n] (8n) + [£ L] (80)
[, €](8€) =+ [, ] (3n) + [, £1(8E)
[E €1(36) + [L 9] (8n) 4[4 £1(80)

Il

I

But equations (16), (17), (18), (28), (29), also hold.
Hence, by (128) it follows that (16), (17), (18) become

[€ o] (Ba) + & B](8B) =0 . . . . . . . (129),
[, a] (0a) +[n, B (8B) =0 . . . . . . . (130),
[§ o] (Ba) + [, B (8B) =0 . . . . . . . (131)
Hence
& al/l& Bl = [ alln, Bl=[¢ )L B8] . - . . . (132)

Now only two of the five equations (16), (17), (18), (28), (29) are independent.
Suppose that (16), (17) are independent.
Then, since (28), (29) depend on these, relations exist of the form

[§ al =M[& E]+ &l [EBl=plE &)+ o [€ 7],
el =XEq]+pln ], [7B8l=pl&nl+ olnn],
[Lal=NEO+p(En], [LBI=pl& U+aln ],
e, a] = NE o]+ plan], [aBl=plE ]+ oy, «],
[a, B] = MEBI+p[Bim] (B Bl=pl& B+ oln, Bl
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Hence, by (132),

MEE+plEn] _AMEn+plnn] __MEL+pn L]
plEEl+alEn] plEml+almn]l plE L]+ aln ]

Ao — pp] {[& €1[m, n] — [& ]S =0,
o — ppl {& €1, d—[Em][E 3 = 0.

Therefore

and

Hence, unless Ao — pp = 0, it is necessary to have both

L& €1 m] —[& ) =0,
L& €, L —[&E0]LE L=0.
[& ELE m] =& nl/ms 2] =[& L/, £}

and

* Hence

But if these results hold, the two equations taken to determine the edge of the
binpde would be the same, and would not determine it. Supposing then that those
two equations have been selected, which are independent, this alternative cannot

hold, and therefore
Ao — pp = 0.

Therefore Lb
L& “l — [, 2] — [§ «] — [2, 2] — [, B] — l’ .
[& 81 Bl [68] [«B] [BBl »p

Hence the equations (126) are satisfied, and in particular

[o, @] [B, B] ~ [« B = 0.

Hence, if the edge of the binode always touch the binode locus, the condition (76)
holds. : A

(C.) In this case A is given by (108).

Let & 7, { be any point on the binode lgcus.

Then whenz =§ vy =1,2=1{

0, = ay = a of surface having a binode at & G

b, = b, = b of surface having a binode at & », .

Df;/Dz = 0, Df;/Dy = 0, Dfy/Dz=0, when s =& y =1, 2= {
Df,/Dx = Df;/Dx, whenx = £, y =, 2 = L.

Therefore, Dﬁ/Dx = 0, and similarly Df;/Dy = 0, Dfy/Dz = 0, when x = &y=nmn,

= C:
MDCOCXCIL—A, | 2y
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Now if each of the differential coeflicients of A be formed up to the third order, then
every term in the result will contain as a factor one of the following quantities :—

Jior f, or a first differential coefficient of f; or f,.

Hence, when « = & y =17, 2= {, A and all its differential coeflicients up to the
third order vanish.

Hence, it B = 0 be the equation of the binode locus, such that the edge of the
binode always touches the binode locus, A contains B* as a factor by Art. 1, Pre-
liminary Theorem B.

Example 10.—Locus of Diplanar Nodes such that the Edge of the Biplanar Node
always touches the Biplanar Node Locus.

Let the surfaces be
« o= + By = U +3[c (0 = @) e (y — b) g2 — 1 =,

where a, B, ¢, ¢, g, h are fixed constants ; «, b are the arbitrary parameters.

(A.) The Discriminant.
It is the same as that of the equation
aX3 4 BY? + 3Z (¢X + eY + gzZ)* — W23 = 0.
Hence,
S = — afce (¢* + 1) 2,
T = o*B* (3g% — 1% 2* + 4oy (ae® + Bc®) (8h7 — ¢°) 2% — 4h* (ae® — Bc?)? 2%

Therefore,

o _{(aZ,BZ) (8g° — Iy 2* 4+ 4aBg (ae® 4 Bc®) (8h* ~ ¢*) 2 — 4h° (ae® — ,803)2};
A=z — 64383 (g° + W2)P 22

In order to show the way in which the factor z* arises, the method in which the
discriminant is formed will now be examined.
It may be obtained by eliminating X, Y, Z from

(X + eY + g2Z) (X + €Y + 8gzZ) — h* 22 =0 . . . (133),
aX? 4 2cZ (X 4+ eY +gzZ)y =0 . . . . . . (134),
BY? + 2eZ (X + eY + gzZ)=0 . . . . . . (135).

Hence,

Y = 4 X /(ea/cB).
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Representing both values of Y by Y = \X, it follows that

aX? 4 2¢ (¢ + e\) XZ + 2cg2Z? = 0.

Therefore,
X/Z = — %(c + e\) + % §c? (¢ 4+ eN)* — 2cagz}'?.
Hence,
X —= — %(c +el) + }L {¢*(c + e\)? — 2cag2}'® . . . . (136),
y—b=2\ {_ £ (o4 o) £ 11t (o 4+ A — QCagz}W} ... (137).

These give the values of @, b which, when substituted in the equation of the
surfaces, give the discriminant. ‘ '

The values of a, b corresponding to a point & 7,  on the binode locus, will now be
found.

It will be shown presently that z = 0 is the binode locus.
~ Hence { = 0, and therefore

(6 4+ eN) £ = (e eb),

f—a=—"
o

’7‘b=’*{-§(c+e>~)iz(c+ex)}.

Hence, for each value of N, one of the values of @ iz & and one of the values of
b is 7.

Hence there are two sets of values of a, b satisfying Df/Do = 0, Df/Db = 0, which
become equal when . = & y =, z = 0.

These two sets of values both give a = £ b = .

It will now be shown that the substitution of each of these systems of values of
a, b in f, will give rise to the factor 2% in A.

Now

Y = \X, X = pZ,

where

A=+ /(ea/cB),
p=— % (¢c+ e\) + ;1;{69’ (¢ + eN)* — 2cagz}'”

Substituting these in the left-hand side of (133), it becomes
[(op + e\ + g2) (o + edp + 3g2) — h*2°] 22,
ne.,
[0 (¢ + eN)® + 4dgp (¢ + eN)z + (3g® — 1) 27| 22
2 F 2
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Although, to find the diseriminant in the usual way, it is necessary to substitute
each set of values of A, u in this expression, and then to multiply the results together,
it is possible to determine more readily which value of w will lead to the factor 2? by
expanding p in ascending powers of z.

Now
_ ¢ , 4 _ agr a®y*? _ .
,u._-——a(c—]-e)\):]:a(c—-}—e}\) {1 cle + ey 26 (¢ + en)t }

Taking the upper sign

_ g7 ag’e?
F= o " 20+ )

Substituting this value of p in
[ (0 -+ e\ + g (o + eN) 2 + (39" — 19 2%] 22,

the coefticient of 2% in the bracket is (— A?%), there being no lower power of z.
This being true for each value of \, the factor 2* is accounted for.
The other value of u will lead to a factor, in which there is a term independent of z.

The elimination wiil now be completed.
It is necessary to substitute the values of A and p from

N =4 /(ea/cP),
and
ap? 4+ 2¢ (¢ + eX) p + 2¢9z = 0,
in

p(c+ eN) + 4gu (c 4 eN)z + (3g° — h?) 22
Substituting first for u?, and multiplying by «, this becomes
p(ec 4+ e\)[— 2¢ (¢ + eh)? + dgoz] + [ — 2cgz (c + eN)? + az? (39> — h2)].

Substituting both values of w in this, multlplymcr the results together, and multi-
plying by «, the result is

2¢9z (¢ + eM)*[— 2¢ (¢ + eN)® + dgaz ]’
— 2¢ (¢ + e[ — 2¢ (¢ + eN)® + dgaz][— 2¢gz (¢ + e\)? + az® (3g° — 1?)]
+ a[— 2cgz (¢ +e))® + az® (39° — B P,
This reduces to
: — 4cPah? (c L+ eN)'2?
+ dego® (307 — ¢°) (¢ 4 eN)? 2®
b (39> — IR 2
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Putting \? = ea/cB, and multiplying by B/«, this becomes

2B (3g7 — hA)? 2t + dgaf (3h* — g?) (ae® 4 Bc?) 28 — 4h%? (ae® — BcB)?
— 320383 h%? + 8c%P\ [gaBe? (32 — ¢?) — 2h%2 (aed + Bc?)].

Substituting for \ its two values 4 /(ea/¢cf), multiplying the results together, and
reducing, it becomes

" ¥{oc2,8’3 (3¢° — 1?22 + 4oByg (ac® 4 ,303) (817 — 9?2z = 412 (a3 -—/303)2}2-
— 64a3/33<;3@3 (* + ]7,2)3 22

This is the same value as before for the diseriminant.

(B.) The Surface z = 01s ¢ Binode Locus such that the Edge of the Binode touches
the Binode Locus.

Transforming the equation by means of & = o + X, y = b+ Y, z = Z, it becomes
aX? 4 BY? + 8(cX + €Y + gZ)* — K4 = 0.

Hence the new origin is a binode.
Hence the binode locus is z = 0.

The biplanes are v _ ,
3t (cX 4 eY + gZ) — hZ = 0.

3t (eX + Y + gZ) 4+ hZ = 0.
The equations of the edge are therefore

Tt lies therefore in the plané Z = 0, :e., in the plane z = 0.
Hence it may be considered to touch the binode locus.

The condition (76) is satisfied at every point on the binode locus.
Hence the factor z* is accounted for.

(C.) The Suiface

{028 (3¢ — WAV 2% + dgafB (ac® + Be) (31% — g°) # — 4h* (ae® — Be)*}?
— 64 BB (g7 + )PP =0
s an ordinary Envelope.

This may be proved by finding the tangent planes parallel to the plane z = 0.
Hence it is necessary to sutisfy at the same time
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a(@—af + By —bP+3c(x—a)te(y—0)+g —i2*=0 (188),
o (x— a) +2[c (@ —a) +e(y —b) + g7] =0 (139),
By —b)+2efc(x—a)+e(y—0b)+
3gle(x—a)+e(y —b) + gz] — 15 +0  (141),

+ 92| =0 (140),

or putting  — a = X/Z, y — b = Y/Z, the equations (138)~(140) become the same as
(183), (134), (185).

Hence the result of the elimination will be the same as in the previous case. Tt is
only necessary to show that (141) is satisfied.

Multiplying (189) by (x — @), (140) by (y — b) and subtracting from (138), it
follows that

[e(x—a)+e(y —0) +gz][c(®—a)+e(y—0b)+ 3g2] — h%2 = 0.
Therefore

[o(@ = a) + ¢(y = b) + 92P + 22 e (o — a) o+ ey — b) + g2] — % = 0.
Therefore
c(w—a)+e(ly—0b)+gz=— gz e /(5*+ I

Hence (141) is not satisfied unless z = 0.

Now z = 0 makes ¢ (x — a) + e(y — D) + gz = 0.

Therefore © = « by (139) and y = b by (140).

This solution corresponds to the binode locus.

It may therefore be excluded.

Hence the factor of the discriminant under discussion corresponds to an envelope
locus, touching all the surfaces; it consists of four planes parallel to z =0, whose
equations are independent of the arbitrary parameters.

SecrioN IV, (Arts. 16-25).—CONSIDERATION OF CASES RESERVED FROM THE PREVIOUS
sEcTioN. THE DEGREE oF f (x, 9, 2, @, b) IN @, b I8 NOW THE SECOND, AND THE
EQUATIONS Df/Da == 0, Df/Db = 0 ARE INDETERMINATE EQUATIONS FOR THE
PARAMETERS AT POINTS ON THE LOCUS OF ULTIMATE INTERSECTIONS.

It was supposed in the previous section that the degree of f'(x, 9, 2, a, b) in «, b was
higher than the second ; for if the degree were the second, and the analytical condition
satisfied which expresses that at a point on the locus of ultimate intersections, two
systems of values of the parameters, which satisfy Df/Da = 0, Df/Db = 0, become
equal, then this analytical condition requires to be specially interpreted.

For now Df/Da = 0, Df/Db = 0 are two simple equations in @, b. Hence they are
either satisfied by one value of @ and one of b, or else are indeterminate. Bul since
the condition
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DYDY 0V
Da? Do? <D0¢ Do)
holds, they are indeterminate.

)

In this case the discriminant cannot be formed as in the previous section.

There are not two coinciding systems of values of the parameters to consider. It is
shown that there is one system which can be determined.

There is also the additional peculiarity that the rationalising factor introduced to
make the discriminant of the proper order and weight always vanishes at a point on
the locus of ultimate intersections. Hence, on account of it, the equation of an
envelope or singular point Jocus may be expected to enter into the discriminant one
or more times. As this number cannot be determined in a general way, it is better
to express the equation of the system of surfaces as a quadric function of the para-
meters, and form the discriminant in the usual way.

Art. 16.—The Discriminant and its Differential Coefficients as far as the third order.

Let the equation of the system of surfaces be

ua? + 2Wab 4 vb* + 2Va 4 2Ub 4w =0 . . . . (142).

To find the discriminant, solve for a, b, the equations
we 4+ Wo4+V=0. . . . . . . . . (143).
Wa4ob+U=0. . . . . . . . . (144),

obtaining hence

WU — oV )
0= ——————

w — W?
(145).
) — WV —uU
T oww — W2 J
Now substitute these values of «, b in the left-hand side of (142).
The result is
w Vv
woo ulsel® ¥
q,J N [ W v
vV U w
o e W
The rationalising factor is | _ ' .
W v
Hence the diseriminant
w W V|
A=W v U| . . .. ... (146),

VU w
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Therefore ,
u, W, V,| w W V| w W 'V |
A=W v U |+ |W. oo Us|+ W v U
V U w vV U w Ve Us w, |
Use War Vi u WV w WV
A=W v U | 4+ | W Ve Uy | 4+ | W o U ]
vV U w Vv U w Voo U e
w W V , W, V, v, W, V,
+2 | W, o, U, | +2|W o U |+2|W, o U,.
V. U. w, V. U, w, V U w
ey W, Vg uw W V w W V
Ay=|W » U |+ Wyov,U,;|+ W o U
V U w { V U w Vo Uy wy,
(1w W, V, u, Wy Vy |
+< | Wou, Up| 4+ W o U |}
VU w V. U w, |
(] w, W, V, v W V|
+5 1 Wy, U, | + W, U, | %
VU w V. U, w, ||
"l ow, W, V, u W V
4+<|Wav U|+|W,o U,
v, U, w, v, U, w,

Apr=| W U |4 two similar terms

(148).

(149).

V U w
Upe Woo Vi | Yaw Wy Vi

+ 3 W, o, U, | <+ } W » U - two similar terms
V U w V., U, w, |
u, W, V,

+6 W, v, U,

V.?; LT/I; 'U];,; | .

(150).
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u,my W.my sz
Y

Dpy=| W v U
vV U w
(] e Wae Vi
+41 W, v T,
LV U w
(| ey Woy Vo
4+2< | W, o, U,
LV U w
u, W, V,
4+ 2| W, v, U,
V. U, w,
! Ugyz nyz V@yz
Ay=| W v U
Vv U w
w, W, V,
V. U, w,
‘u, W, V,
+ | W, v, U,
V., U, w,
[ Yoy Wo V,
+ | W, », U,
+ V U w
3 w W V
+ “Txy ’vxy ny
. Vz UZ wn’v’

+ 2

-+ two similar terms

Vee Waoz Ve
W » U
v, U, w,
Uy Way Vo
\VA) U
V. U, w,

U We V,
W, », U,
V. U, w,

-

-

SYSTEM OF SURFACES.

-+ two similar terms

o}

u, W, V,
W, o, TU,
V., U, w.
U, W, V,
W, », T,
V., U, w,
ey Way Vo
W » U
V., U, w,
u, W, V,
W » U
Vo Uy wy

9 -+ two similar terms
\ -+ two similar terms
+ 2| W, v, U,
v, U, w,
uz Wﬁﬁ V’Z
+ W, v T,
v, U, w,
u, W, V,
+ | W, v, U,
vV, U, w,
v, W, V, |
+ Wxg/ ”wg/ Ua;y
V U w !
v W V
+ | W, o U,
V., U, w,

225

(151).

+ six determinants, which can be obtained from the last six by interchanging
x and z

4+ six determinants, which can be obtained from the same six determinants
by interchanging ¥ and z

MDCCCXCIT.—A,
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(152).
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Art. 17.— The relations which hold good at points on the Locus of Ultimate Intersections.

A.) The analytical condition (76) which holds, becomes with the notation of this
y
section
w—W2=0 . . . . . . . . . . (153).

Hence the values of @, b given in (145) are either infinite or indeterminate.
Excluding the cases where they are infinite, it is necessary to have

U-—-UV"‘OI
WV — U = of (154).

Again, by substituting from (143) and (144) in (142), it follows that
Va+Ub+w=0 . . . . . . . . (155)
Solving (144) and (155) for a, b, it follows that

_ww—U? W]
= WU — Vo

’ (156).
b= s |

Hence by (154) these values will be infinite unless

vw— U =0
4 N ¢ ;14 2
UV —-—Ww=20 .

Hence by (153), (154), (157)

w : W:V
W:w:Us. . . . . . . . . (158).
V:U::w

Il

I

Now if P = 0, Q = 0 represent any two of the five equations (153), (154), (157),
then these ave satisfied at every point of the locus of ultimate intersections.

Let &, { and €4 8¢ n + &, { + 8 be neighbouring points on the locus of
ultimate intersections.

- Then ;
‘PSH a—-3n+ Psr=o,

) BQ
sg+a(°sn+a S¢ = 0
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Now the only relation between 8¢, 8y, 8 is that which expresses that the point
£+ 8 m + 8, L+ 8L is on the tangent plane to the locus of intersections at & 7, {.

Hence
P 0Q _ aP /oQ _ 9P /oQ

5% = o/ 3 = ot/ % (159).

It is now possible to determine the values of @, b which are indeterminate as given
by (145).
For, representing the value of ¢ in (145) by the equation

@ ="P/Q,
it follows that the true value of « is the limit to which the expression
op oP oP .
P-l-a-fsf—l-a* 877+a—é:0C
a [N
Q+ 2 85 +508 + 3 oz

approaches, when 8¢, 8, 8 vanish.

Now P = 0, Q = 0; hence by (1 59) the true value of a is equal to any one of the
three ratios in (159).

Besides the values of a, b given in (145), (156), other forms may be obtained from
equations (143), (155).

Putting these together

WU =2V ww—TU"  UV—-Wuw )
w— W2 WU-—-Ve~ WV —TUu
WV — U UV—Wuw ww — V?

b= W TWU Ve WV—UuJ

(160).

All these values are indeterminate.

Now although the value of each of these fractions can be found by differentiating
numerator and denominator with regard to any the same variable, yet they will not
all lead to the true value of «, b, because the true values of a, b are found by
solving the equations ua + Wb 4+ V =0, Wa 4 vb 4+ U = 0, and finding what the
values approach to as the coordinates approximate to the coordinates of a point on
the locus of ultimate intersections. Now at points not on the locus of ultimate inter-
sections, the values of o, b do not satisfy Va + Ub + w = 0. Hence the true values
of @, b cannot in general be found by solving this last and either of the preceding
equations, and then finding the values to which these approach as the coordinates
approximate to the coordinates of a point on the locus of ultimate intersections.

The true values are obtainable only from the solutions (145).

262
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(B.) If there be a conic node locus, then, besides equation (142), the following
must be satisfied—

u0® 4+ 2Woab 4 v,0* 4 2V + 20D +w.=0. . . . (161),
w0 + 2W,ab 4+ vb* + 2V,a 4 2Ub 4w, =0 . . . . (162),
w0? 4 2Woab 4 v,0* + 2V + 2Ub 4w, =0 . . . . (163).

(C.) If there be a biplanar node locus, then the equations (126) are satisfied as well
as the preceding.
In this case these are

2 (et + Wb+ V.): 2 (w0 + Wb+ V,): 2 (e + Wh 4 V.): 2u: 2W } (164)
=2(Wa+vb+U,): 2(Wa+ovb+U): 2(Wa+vb4U,): 2W: 20 . '

-

From these, the following may be deduced.
Introducing a quantity A, such that

woh + Wb+ V,=x . . . . . . . . (165),
it follows by (164) that
W4 ob+ U, = \W. . . . . . . . (166).
From (165) and (166)
w0 + 2 Woab + v,b° 4 aV, 4 bU, = A (au 4+ DW).
Hence by (143) and (161)
Va+Ub+w, =2V . . . . . . . . (167)

Similarly, quantities w, v exist, such that
u,d 4+ Wb -+ V, = uu
Wy 4+ v,b 4+ U, = uW
Va+Ub+ w, =pV

(168),

~

and

wer 4+ W0 -V, =vu )
Wo +ob4+U,=»W » . . . . . . . (169).
Vo 4+ Ub+w =vV

Consider now the equations (143), (144), (155), (165), (166), (167); multiply (143)
by — v, (144) by W, (165) by — v, (166) by W, and add.
Therefore

a(2WW, — uv, — vu,) — Vo, + UW, — oV, 4+ WU, = N (W? — u).
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Hence, at points on the biplanar node locus,

0 : 0 :
aa—x(uv-—-wz):&(U\V“V?}) e e e (170).

Again, multiplying the same equations by W,, — w,, W, — u in order and adding,
it follows that

0 - 0
ba;(uv—-Wz):a;"(VW—IIu) e e e e (171).

Again, multiplying (144), (155), (166), (167) by — U,, v, — U, v in order and
adding, it follows that :

a(— WU, + Vo, — UW, + oV,) + (v, + wo, — 2UU,) = A (vV — UW).

Hence ; 5
W (UW —oV) = 5 (vw—U%» . . . . . . (172).

Again, multiplying the same equations by V,, — W,, V, — W in order and adding,
it follows that

o .
Do (UW —oV) =& (UV —wW) . . . . . . (179).

Again, multiplying (143), (155), (165), (167) by U,, — W,, U, — W in order and
adding, it follows that

a(wU, — VW, + Uy, — WV,) + (VU, — wW, + UV, — Wuw,) =X (uU — VW),

Therefore
oL VW —u0)= 2OV —uW) . L (174)

Again, multiplying the same equations by V,, — u,, V, — u in order and adding, it
follows that

0 0 ,
bé;(VW——uU):é:U(uw—-V% Coe oo (17s).

Further comparing the three equations (168) or the three equations (169) with
equations (165)-(167), it is evident that it is possible in any one of the equations
(170)—(175) to replace = by either  or z.

It will be noticed that in the case of the biplanar node locus, the true values of the
parameters may be found from any one of the ratios in (160).
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(D.) If there be a uniplanar node locus, then in addition to the results obtained in
(B) and (C), it follows by (48) that

Ul 4 . ..
:'UWOLQ—I—

=y, a® 4 ...

Tt w4 2 (e + Wb V) s 2 (Wea 4 vb 4+ UL)
St ottt 2 (wa + W+ V) 2(Wea 0,04+ U

cu® i 2 (e 4+ WD+ V) 2 2 (W 4 b 4 U

=2(wa+Wb+V,):2(ua+Wb+V,):2(uwa+Wb+V,):2u : 2W

=2(Waa+vb4+U,):2(Wea40b+TU,):2(Wa4t0b+TU,):2W: 20 (176).

(E.) (i.) The following equations will be useful in the case of biplanar and
uniplanar node loci :—

p R Q p ROQ u, W, V,

We oo U + W 0o U | 4+ R ¢ P |

V U w V., U, w, VU w|

v W V bu, W, 'V, ' w WV

V.U, wl| QP »| | QP o]
=(pa2+2Rab+gbg+2Q0&+2Pb—l—¢)£(uv—wg). .o (177,

For the first and second determinants

0

0

0
A (UV — Wuw) + Q o (WU — Vo).

The third and fourth determinants

R 2 (UV — Wu) 4 g2 (ww — V¥) + P2 (WV — Uu)

o
o

The fifth and sixth determinants

0 0 0
=Q 5 (UW — Vo) + P o (VW — Un) + 7’5;(1#0 — W2),
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Hence in the case of biplanar and uniplanar node loci, these six determinants are
by (L70)—(175)
= (pa®+ 2Rab + ¢b® 4+ 2Qa 4 2Pb + 7') 5 (wv — Wz)

(ii.) u, W, V, )
W, v, U, ==—-)\2u§;(uv—W2) .. . . (178)
V. U, w,
For
u, W, V., u, W, au, +bW,+ V,
AW v, U= | W, v, aWot b0, + T,
V., U, w, V. U, aV, 40U, 4w,
u, W, u
=AW, v, W
V. U, V
=\ W, | Vy W .
| aw, +0W, + V., aW, + b0, + U, au+ bWV |
| e W, wu
=N W, v, W
w W 0

=M(—u,W?+ 2u0WW, — u%,)
= N (= uuv + 20WW, — u?,)

= = Nu (uv — W?2).

(i11.) w, W, V, u, W, V, | v, W, V,|
W, v. U, 4+ | W, v, U, 4+ | W, v, U,
V. U w, V. U, w,| vV, U, w,
u, W, V, u, W, V, u, W, V,
+ W, », U, |+ | W, o U, |+|W o U,
V. U, w. V. U, w vV, U, w,

= — Zuvu x (uv = W?) — 2\ 5 0 (uv — W2) thuaa (uv = W?) , (179).
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For multiplying the first column in each of these determinants by a, the second by
b, and adding to the last they become

u, W, pu Uy “W&, s w, W, wu
W, v, A\W | | W, v, W | + | W, v, A\W
vV, U, »V V. U, AV v, U, uV
u, W, vu u, W, Au u, W, Au
+ | W, 0 pW I+ W, o, W W e W
V., U, AV Vv, U, »V Vv, U, uV

The coefficient of A is

u, W, 0 u, W, u | W, u
W, v. W|+ | W, o, W|+ ! W, w0
vV, U, V v, U, 0 v, U, V|

The coeflicient of u iz

u, W, u wy W, 4 uw, W, 0 |
W, v, W4+ | W, o, 0]+ W, v, W
;
v, U, o V. U, V| v, U, V
The coefficient of » is
u, W, u] w, W, wu | W, 0
W, o. 0|4+ | W, o W, |4 f w, » W
v, U, V vV, U, 0 v, U, V

The coefficient of u can be obtained from that of A by changing 2 into « and y
into z.

The coeflicient of » can be obtained from that of A by changing ¥ into = and 2z
into ¥. ,

Hence it is sufficient to calculate the coefficient of A,

The coeficient of A, viz., :—
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u, W, 0 w, W, u u, W, u
W, v. Wi+ W, o, 0|4+ W, », W
u, W, 0 w, W, u 1, W, u |
= W, v, Wi 4H+IW, o 0|+|W, ”, %
VvV, U, V V., U, V pu — aw, = bW, yW —aW, — by, 0
w, W, u
=pl W, v, W
L w W0

+ u, {Vv,— WU, — a (WW, — uv,)}
+ W, {WV,— 2VW, + uU, —b(WW, — uw,) — a (uW, — Wu,)}
+ v, {Vu, —uV, — b (uW, — Wu,)}

= — pu 9 (v — W?)

- ps, J

+ u, {v. (au + V) — W (¢W, 4 U,)}
+ W, {W (au. + V) — W, (0w 4+ OW + 2V) + u (bv, + U.)}
+ v, {u. (OW + V) — u (0W, + V.)}

= — ,u,ugz—(zw — W?)
4, (— vW?) + W, (20u W) + v, (— »v?)

0 0
= — pus (uv — W?) — s, (uv — W?2).

Hence the coefficient of u obtained from this by changing 2 into @, and y into z;
and, therefore, v into N, and u into v, is

— Vua%(uv — W2 — Aua%(wv — W?).

And the coefficient of », obtained by changing, in the coefficient of X, 7 into «, and
z into y, and therefore, pu into A, and » into p, 1s

0 . G
- )\ué—y (u?f — W?) — pu o (uv — W?).

From these the equation (179) follows.
MDCCCXCIT.—A. 2 H
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Art. 18.—T0 prove that under the conditions stated at the head of this Section, every
Surface of the System touches the Locus of Ultvmate Intersections along a Curve.

Consider the surface (142), the values of @, b being now supposed to be fixed.

Consider any point & 5, { on the curve in which the surface (143) meets the locus
of ultimate intersections; then, by (158), these coordinates also satisfy the surfaces
(144), (155). |

Multiplying (143) by «, (144) by b, (155) by 1, and adding, it follows that these
coordinates also satisfy (142).

Hence any point on the curve of intersection of (143) with the locus of ultimate
intersections lies on (142) and (144) also.

Hence the surfaces represented by the three fundamental equations meet the locus
of ultimate intersections in the same curve.

It is necessary to prove that the surface of the system (142) will touch the locus of
ultimate intersections along this curve.

Now,
BD; (na® 4 2Wab + o* + 2Va 4 2Ub + )

= “1:%);} [;]-Z{(ua' + Wb + —Vv)z + bh? (’LL’U - WZ) _|.. 20 (U'LL - VW) + (uu) — VB)}]

I

— Z—s S(ua 4+ Wb + V) 4 0* (uv — W?) + 20 (U = VW) 4 (vw — V)3
+%{2(uo&+Wb+V)i])~)—(ua+Wb+V)

B (= W) 2D (U — VW)+vg(zlw—V9)}_

Hence, at a point on the locus of ultimate intersections, this is equal to

U

L { (o = W2) 4 2b L (Uu— VW) 4 & (10 — vl
Hence the tangent plane to the surface at the point «, v, 2 18

(X — x){bz oy (uv — W?) 4 2b é (U — VW) 4 a (uw — Vz)}
+ (Y —y)<0b 3 (un — W) + 205 (Uu — VW) + 5 (uw - VQ)}‘

+ (% - z) Z)zi (v — W?) + 2)5- (Uu — VW) {- (v —

,_‘.»__\,_.J\_.‘
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Now this, by (159), reduces to

(X-—nac)é%(uv—-wg)+(Y-—y)%(uv—-—W9) F(Z =) 2w = W) =0,

which 1s the equation of the tangent plane to the locus of ultimate intersections, since
uv — W? = 0 at every point of the locus of ultimate intersections.

Hence each surface of the system touches the locus of ultimate intersections along
a curve.

Art. 19.—To prove that under the conditions stated at the head of this Section, there
are in general at every point of the Locus of Ultimate Intersections two Conic
Nodes ; and if C = 0 be the equation of the Locus of these Conic Nodes, A con-
taans C* as a factor.

(A.) To prove that there are in general two conic nodes it is necessary to show that,
there are in general two distinct sets of values of @, b, which satisfy (142), (161),
(162), (163).

These will be satisfied if (143), (161), (162), (163) be satisfied.

Eliminating b from (143) and (161) the result is

o (W, — 2uWW, + 0,02 4+ 20 (uVv, — VWW, 4 W2V, — WuU,)
+ (V?o, — 2WVU, + Wa,) = 0

Hence by (153), (154), (157), after division by u, it follows that

0 . 0 : 0 , : %
@ 5 (w — W?) + 20 5, (Vo — UW) + % (vw—TU*=0. . (180)."
And in like manner by eliminating ¢ between the above equations

bzé%(uv — W?2) 4- 2 a%(Uu — VW) + 9% (ww — V) =0 . . (181).1

Further, by means of (159), it is possible in these equations to change @ into y or
into 2.

These equations will be called the parametric quadratics.

Hence choosing @ and b to satisfy (143) and (161), they will also satisfy (143) and
(162), and (143) and (163).

Hence it is possible in general to find two distinct systems of values of @ and b
which satisfy (142), (161), (162) and (163), at points on the locus of ultimate
intersections.

¥ The mean of the values of o satisfying (1€0) is the value of a given by (170).
+ The rcean of the values of b satisfying (181) is the value of & given by (171).
2 H 2
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Hence there are in general two conic nodes at every point of the locus of ultimate
intersections.

(B.) It follows from (146) and (147) by means of (158) that A, 9A/dx both vanish
at points on the locus of ultimate intersections.

By symmetry 0A/0y, 0A/0z also vanish.

Hence A contains C? as a factor.

Example 11.—Locus of two Conic Nodes.
Let the surfaces be

(al + &) (w — )’ + 2 (BL + Sexy) (w — ) (y — b) + (YL + €y°) (y — b)
+ 29L (e — a) 4 2hL (y — b) + k{* =0,

where {=2—cx —dy; and &, B, 7, §, ¢, ¢, d, g, I, k are fixed constants; a, b the
arbitrary parameters; n =1 or 2.

(A.) The Discrimunant.

This can be formed by solving the equations

(@l + 8%) (z — @) + (BL + Sexy) (y — b) + 9L =0,
(BL + Sexy) (v — o) + (v + €9°) (y — b) + h{ =0,

for a, b; and substituting n

gl(w — a) 4+ 4l (y — b) + k-

The values of a, b are (after removing the factor { which makes them indetermi-
nate) given by

v g = BB =gy €+ ey (R — gey)
O = Bt (nSy — 2Beny + a8

— (9B — hea) & — o (hbx — gey)

y —b

Substituting these values, and multiplying by the rationalising factor

w — w* = [[(ay — B°) L+ (2ey” — 2B8exy + y&'a?)]
the result 1s
ie(ay — BY) 07 4 k (aey® — 2B3exy + y&ia’)
— (al® — 2Byh + yy*) F — (hda: — gey)” 7.

This might also have been obtained from the form (146,
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(B.) The Locus of two Conic Nodes s { = 0, and if n =2 there is also a Curce
Locus of Conic Nodes.

The singular points are determined by finding solutions of f= 0, Df/Dx = 0,
Df/Dy = 0, Df/Dz = 0.

But since Df/D{ = DfJDz, the equations

F=0, DffDa = 0, Df/Dy = 0, DFIDL = 0

may be used instead, where @, ¥, { are now the independent variables, so that the
meaning of the symbol of differentiation D is changed.
The equations to be satisfied are

(2l + &%) (& — a) + 2(BL + Sewy) (v — ) (y — ) + (YL + €°) (y — b)

+ 290 (x — a) + 20l (y — b) + k(" = 0,
(82 (z — a) + ey (y — 0)] 8 (22 — @) + {[a (x —a) + B(y — b) + 9] =0,
[62 (x —a)+ ey (y—D)]e(2y —b) + {[B(x—a)+y(y —b) + A]=0,
a(@—af+28@x—a)(y—"0)+yy—>07+2(x—a)+2h(y—>b)+ nk" =,

From these it follows that

[0z (x —a) + ey (y — O)F + k(1 —n) = 0.

(i.) One method of solving the above equations is to take

{=0,

S (x—a)+ ey(y —0) =0,

a(@—a) 4 2B(x —a)(y = b) + y(y = by + 29 (2 =~ a) + 2h (y = b) + nk{~' = 0,
Hence whether n = 1 or 2, there are two values of b, and two corresponding values

of @. Hence there are two conic nodes. Hence { = 0 is a locus of two conic nodes.
(ii.) Another method of solving the equations is to take

§@u—a) a@—a)+By—b+y

e(Zy—-0) B@—a)y+qy@~—0)+h
(82 (2 — ) + ey (y ~ )] 8 (20 — @) + L[ (e = a) + By — b) +g] = 0,
a(@=—al+28(x—=a)(y—>0)+y(@y =0+ 29 (x~a)+ 2i(y = b) + nk{*' = 0,
(82 (2 — @) + sy — WP+ £ (L~ 0) &= 0.
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If n =1, then o (x — a) 4 ey (y — b) = 0.

Hence { = 0, and this is the same solution as in (i.).

If, however, n = 2, there are four equations to be satisfied by x, y, { Eliminating
x, Y, { it is necessary that a certain relation should be satigfied by a, 0, in order that
the equations may be consistent.

From the above equations (when n = 2)

S (v = a) + ey (y =) =1/« {
Vr 8 (20—a) +ea(r—a)+ By —0b)+g=0,

rejecting a solution { == 0.

Vie(2y = b))+ Bz =—a)4+y(y—b) 4+ h=0,

(@ —af +2B(w—a)(y—0) +yy— )+ 29w —a)+ 2k (y — b)
+ 24/ k[ (2 — @) + ey (y — b)| = 0.

Hence
gle=a)+h(y=10)+ vr[8u(x—a) 4 eb(y—b)| = 0.
Hence
(= a) (2 + 28/x) + (y — 1) 8 + (g + a8v/k) = 0,
(x—a)B + (y = b) (y + 2ea/) + (b + bev/x) = 0,
(= a) (g + adv/ ) + (y — b) (b + ber/x) = 0.
Hence
i a4 28V o g+ adv/ « {
| 8 y 4+ 2/ b4 bev/x
'| g+ advic b4 ber/k 0 } == 0,
1.6,

(g + @8V k) (y + 2ev/k) — 2B (g + ¢ 8/ 1) (h + ber/)
+ (b 4 ben/k)? (w + 28/ k) = 0.

Hence only when this relation holds between «, b, will there be any conic node on
the surface which is not also on the locus ¢ = 0.

A's in the general theory explained in Avt. 8, this leads to a curve Iocua of conic
nodes. It need not therefore be further considered.

Hence the only locus of conic nodes that need be considered in the discussion of the
discriminant is { == 0.

Now, whether n = 1 or 2, the lowest power of { in the discrimmant is {*; hence
this factor is accounted for.
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(C.) The Locus

kg (ay — B%) 4+ k7 (ady® — 2BBexy + y8%?)
— {(ah® — 2Bgh + yg°) — (hdz — gey)* = 0
s an Ordinary Envelope. ( v)
The condition v — w®* = 0,
.e.,

Uy — B) L+ (ay® — 2B ey + y §%)] = 0,

is not fulfilled at every point of this locus.
To prove that it is an envelope it will be sufficient to show that if «, 9, {, be chosen

so that
(af + 8%2%) (x — a) + (BL + Sexy) (y — ) + gL =0,

(B + Bexy) (x — ) + (v + €4°) (y — b) + WL =0,
gt (x —a) + 1Ly —0) + k=0,

then the surface

ke (ay — B%) + k(' (ae®y? — 2BBexy + y&*a?)
— {(ah® — 2Bgh 4 yg*) — (hdx — gey)* =0
touches the surface
(2l + &%) (# — a)® + 2 (BL + Sexy) (¥ — a) (y — D) + (y{ + €4*) (y — by’
+ 29 (x — a) + 2hL (y = b) + k{* = 0.

Calling the last two equations ¢ = 0, /= 0 respectively, the conditions for contact
may be expressed thus.
The same values of , ¥, {, must satisfy

gb:(), 'f:z()

b¢ jbr _ Dé /Df_ Dé J Df
Dz /[ Dae~ Dy |/ Dy — D¢/ D¢’

where «, ¥, { are the independent variables.
The values chosen for «, y, { obviously make /= 0.
Also eliminating @ = a, y = b, the result is {*¢ == 0.
Hence the values of «, ¥, { can be chosen so as to make ¢ = 0.
Next
pj = 28 (¢ — a) [8 (v — a) + ey (y — b)]
Da «
+ 2[(a + 82) (¢ — @) + (B + Sezy) (y — b) + 9]
=28 a)fdx(z—a)+ey(y —0)]

for the above values of x, v, (.
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Similarly
)= 2e(y = b) [8e (2 — 0) + ey (y = D).
0% = 2 (y8% ~ Bdey) — 208 (e — gey)
%’ — 2k (aey — Bdex) 4 2g¢ (hdx — gey).
Hence l
b [ by _ D¢ | Drf
D / Dae Dy / Dy’
i

(¢ — a) [k~ (eey — BOx) + g (héx — gey)|
= (y — D) [k~ (ydx — Bey) — h (héx — gey)|.

Making use of the values of = — a, ¥y — 0, which satisfy the equations which have
been taken to determine them, and which are solved above in (A), it is necessary to
show that

(BB — gv) L+ ey (hdx — gey)] [k{" " (eey — Bx) + g (hdx — gey)]
= [(98 — ha) { — 8 (hdx — gey)| [k{" " (ydx — Bey) — h (hdx — gey)],

t.c., to show that
k' [(hB — gy) (aey — BOx) — (98 — het) (ydx — Bey)]
+ k{1 (W — gey) [ae®y® — 2Bdexy + y&a?]
— { (héx — gey) (ah® — 2Bgh + yg*) — (hdx — gey)® = 0,

i.e.

(hdx — gey) ¢ = 0.
Hence this is satisfied.
Therefore

be¢ J D _ Dé [ DF,
Dz / Da ™~ Dy | Dy

It remains to prove that each of the equal quantities

@—a)de(z—a)+ey(y—b)] = (y—0b)[dz@—a)+eyly—b)]
k&=t (ydx — Bey) — h (hdx — gey) kL' (aey — Bdx) + g (hdz — gey)

is equal to

a(@—af +2B(@ —a)(y —b) + vy — b+ 29(x — a) + 2h(y — b) + nkf*~*
ak& =V (ay — B + (0 — 1) kg2 (ac®y® — 2B8exy + &%) — («h® — 2Bgh + yg?)

Multiply numerator and denominator of the first ratio by 8z, of the second by e,
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of the third by {, and form a new ratio by addition of the numerators and deno

minators.
Then each of these ratios must be equal to

wt (2= 0 + 2B (1= a) (y=B) + v (y—=0)°+ 298 (2= 6) + 20E (y—b) + g+ [82 (w—0) ey (y—D)T
k" (ay—B%) + nk&" 1 (ae’y® —2B8exy + y&a?) — & (ah® - 2Bgh+ yg*) — (hdx — gey)*

Hence, by means of the equations f= 0, ¢ = 0, each of the ratios must be
equal to

(n — 1)k [[(n — 1) kL (y — B) + (n — 1) BL*= (ay® — 2B8exy + v52%)]

i.e.,

L (oy = B) + (aey® — 2BBewy + y&%7)}
Hence it will be sufficient to prove

(z—a)[bz(z—0a)+ey(y—0] __ ¢ .
kg2 (y8a — Bey) — b (hdx — gey) ~— & (ay — B + (ae®y? — 2B8exy + y&a?)

Now using the values of @ — a, y — b given above in (A),

[8x (¢ — a) + ey (y — )] [L(ay — B°) + (ac®y® — 2Bdexy + y&%2?)]
= {[8x (hB — gy) + ey (98 — ha)}.

Hence, using the value of (z — @), it is necessary to prove that

[(hB — gy) L + ey (hdx — gey)] [8x (hB — gy) + ey (9B — he)]
= [(y — B L + (acs® — 2BSexy + y8%2)| [k~ (ySx — Bey) — h (hdx — gey)]

Hence it is necessary to show that

(ydz — Bey) [kL" (ary — B%) + k(' (ay® — 2B8exy + y&a?)]
= {[h (oy — B) (hd — gey) — g (hB— gy) (v — Bey) -+ 1 (hB— gy) (Bw — cey)]
+ (hdx — gey) [h (a’y® — 2B8exy + yd%?) — gey (ydx — Bey) + hey (Box — aey)],
n.e.,
(ydz — Bey) ¢ = 0.
Hence this is satisfied.

Hence the conditions for contact are satisfied.
Since uv — w? = 0 is not satisfied at all points of the locus ¢ = 0, the factor of

the discriminant corresponding to it occurs only once.
MDCCCXCIT.—A. 21
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(D.) It will be verified that the mean of the values of the parameter b, which
correspond to the two surfaces having conic nodes, at a point on the locus { = 0,
is the same as the value of the parameter b, which is used to form the discriminant.

The values of the parameters corresponding to the conic node are given by

(=0, dx(x —a)+ey(y —b)=0,
a(x—af 4+ 28(x—a)(y —0)+vy(y — 0P+ 29 (x — a)+ 2k (y — b)+nkl*~' = 0.

Hence

(y — b)? (ze®y® — 2BBexy -+ yd®a?) + 2 (y — b) o (hdx — gey) + nk&a?*~' = 0.

Hence the mean of the values of y — b is
dx (gey — hdx)/(ae’y® — 2B8exy + yd%?).

Now putting { = 0 in the value of y — b, given above in (A), the same result is

obtained.
(E.) This example is a case in which the assumption equivalent to that of Art. 7,

viz., that
e 1

Da 0z © Db 0z

at points on the locus of ultimate intersections cannot be made.
The equations Df/Da = 0, DfJ/Db = 0 are given in (A).
Hence da/oz, 0b/0z are given by

(o + 86%) 2 (B Sewy) L= (0 — )+ By — B) + g,
o
(BL + Bex) & 4 (oL + &) & = Bl —a) +y(y— 1) +

Denoting for brevity
w(o—a)+ By —b) + g by G,
B(z—a)+y(y—0)+hby I,
G (y — B) + {(ac®y® — 2B3exy + &%) by K,
dx (¢ — a) + ey (y — b) by L,
it follows that
o
0z
ob 1
5 = g [H (el + &%) — G (BL + Sewy)].

4

= 116 (0 + ) — H (B + Beny)),
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Therefore
2\Da 0z ' Db oz
1
= 2 (GL + L82) [G (L + €y°) — H(BL + Sexy)]

+ = (HL 4 Ley) [H (e + 82) — G (BL + Sezy)]

Hence, dividing numerator and denominator by ¢, and then putting { =0,

1 (PZ oo , Df ob — (Gey — Héx)* + Ldz (Gy — HB) + Ley (Ha — GB) |
® \De 0z ' Db oz ae’y® — 2B8exy + y&a*

\

Now, in the case n = 2, there is a conic node when # = a,y = b, { = 0, and then
G=¢g,H=h L=0.
Hence

(Y ey
®\Da 0z ' Db oz ae®b® — 2B8eab + y&°a?
Hence
Df 8a | Df 0b
Da 0 T Db o
does not vanish,

Art. 20.—To prove that under the conditions stated ot the head of this Section, if
the two Surfaces having Conic Nodes coincide, then they are replaced by a single
Surface having a Biplanar or a Uniplanar Node.

If the condition be expressed that the roots of either parametric quadratic be equal,
then the roots of the other parametric quadratic must also in general be equal ; for
treating the parameters as coordinates of points in a plane, this amounts to expressing
that the straight line (143) touches the conic (161).

In this case then, the two surfaces having conic nodes coincide, and if @, b be the
values of the parameters corresponding to them, they may be found by finding the
points of contact of the straight line (143) with the conic (161).

They are therefore given by the equations

w0 + W0 4+ V, _ W +vd+ U, Via+ Ub + w,
u - W - v '

Now, since the equation (161) may be replaced by (162) or (163), it follows that
in the above x may be changed into y or z. Hence

v+ Whb+V,iuo+Wob+V,iua+Wb+V,:u : W

=Wa+vb+U, Watob+U, : Wat+od4U,:W:o
212
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Hence the conditions (164) are satisfied.
Hence there is in general a biplanar node.
But as a particular case there may be a uniplanar node.

Art. 21.—If the two Conic Nodes are replaced by o single Biplanar Node, and +f
B = 0 be the equation of the Biplanar Node Locus, and if the Edge of the Biplanar
Node touch the Biplanar Node Locus, A contains B as a factor.

It follows as in Art. 19 (B.) that A, 0A/ox, 0A/dy, 0A/oz all vanish on the biplanar
node locus.

Consider now 0’A/0z? as given in (148).

The first three determinants vanish by (158).

To calculate the next three, put in (177)

P=Uy =V r=1w,, P=U, Q=V,, R=W,.
Hence these three determinants
= (@*u, + 200W, + b, + 22V, + 20U, + w,) 8835 (v — W =0
by (161).

Next consider 0°A/ox oy as given in (149).
The first three determinants vanish by (158).
To obtain the next six, put in (177), ‘

p=ty, g=1v, r=w, P=U, Q=V,, R=W,
Hence their value is

(Pu, + 20bW, 4 0%, + 20V, + 26U, + w,) % (wv — W) =0

by (162).
Hence by symmetry all the second differential coefficients of A vanish.
Therefore A containg B? as a factor.

Example 12.—Locus of Biplanar Nodes, such that the Edges of the Biplanar Nodes
always touch the Biplonar Node Locus, the equation of the Surfaces of the System
being of the Second Degree in the Parameters.

Let the surfaces be
(be — ay + cz)* — g*%* — 2mz (x — a) (y — b) =0,

where c. g, m are fixed constants ; «, b are the arbitrary parameters.
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(A.) The Discriminomnt.

Ly? —xy —mz (m— c)yz

A=|—ay—mz o (m + ¢)axz
’(m——c)yz (m+c)wz (¢ — g*)2* — 2m ayz

= m2® {2¢°xy — (¢ — g*) mz}.

The way in which the factor 2? arises will now be examined.
The discriminant is found by eliminating «, b between

(b —ay + ez — g% —2m(@—a)(y—0b)z=0 . . . . (&)
— 2y (b — ay +cz) + 2m(y —b)z =0 . . . . (B,
22 (b — ay + cz) + 2m (x — @)z =0. . . . (9

By means of (B), (y), it follows that (a) can be written
(b — ay + cz)cz — g% — mz 2wy — bz —ay) =0 . . . . (d)

The values of a, b, satisfying (8) and (y) are

a _ b i 1
—ay —mz (m—c)yz|  |(m—c)yz i —‘ y? —xy — mr
x? (m + ¢)wz (m + c)ar  —ay — mz — Y — m x?
Therefore
7 _ b . 1
—maz {2y + (m + o)z} —myz {2ay+ (m —c)z} T — me 2wy + mz)

Now it will be shown that on the binode locus z = 0 ; therefore the values of a, b
become indeterminate on the binode locus.

But they may be determined by dividing out by the factor # which vanishes on the
binode locus, and then
o=z (1 +— >

2zy + mz

c2
b=y (1= 5 )

Hence if £, u, 0 be any point on the binode locus, then at this point the values of
the parameters are o = & b = 1. :

Hence there is a single set of values of the parameters satisfying the equations
Df/Da = 0, Df/Db = 0 at points on the binode locus, which has been determined.
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There is not a double set of equal values as in Art. 15 (see especially Example 10
of that article), where the degree of the equation of the system of surfaces in the
parameters is higher than the second. v

If the values given above for o, b be substituted in the left-hand side of (3), and
the result multiplied by the ra’uonahsmg factor wv — W=, which in this case is

— (2eymz + m*?), the result is

meed

— 9,9y | __TCE
(2xymz + m*2?) { T

— 9222} = mz® {29y — (¢ — ¢*) mz},

which is the same value for the diseriminant as before.
It will be noticed that the factor z enters once through the rationalising factor, and
twice from the remaining part.

(B.) The Node Locus is z = 0.
Substituting € = o 4+ X, y = b 4+ Y, 2z = Z in the equation, it becomes

(X — aY + ¢Z)? — ¢*Z° — 2mXYZ = 0.

Hence the new origin is a binode. There are no other singular points on the
surface.

The biplanes are bX — aY + c¢Z + gZ = 0.

They intersect in the straight line bX — Y = 0, Z = 0.

Hence the binode locus is z = 0, and the edge of the binode, which lies in the
binode locus, satisfies the condition for contact with the binode locus,

(C.) The Locus (¢* — 9°) mz — 2¢g%xy = 0 is an Ordinary Envelope.

To prove this it is necessary to satisfy at the same time

(b —ay + ) — g%* —2mz (w — a) (y —b) =0 . . . . (o),
(*—=g)mz —2¢°wy =0 . . . . . . . . (e,
20 (bx —ay + ex) — 2m(y —b)p _ — 20 (bw — ay + ¢2) — 2m (v — a)z
— 2% - — 20
20 bz — ay + ¢2) — 29% — 2m (& — a) (y — b) ©
m (& — g%) C ’

Multiplying numerator and denominator of the first ratio in (£) by «, of the second by
y, and of the third by z; adding the numerators to form a new numerator, and the
denominators to form a new denominator, and reducing by (a) and (e), each of the
above ratios
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Equating the third ratio of ({) to this, and substituting for z from (€), and putting
a/e = & bly =, the result is

m(m—c)é+mm4c)yn+2(@P—m)=0. . . . . (g
In like manner, from the first and third ratios of (Z),

m* (¢ — ¢°) 7 + 4m (m + ¢) g™y + 4 (9" — m’y?)
+ E{—m*(P+ )+ 2mP(m—c)}=0 . . . (0)

Substituting for £ from equation (n), this reduces to
men? + m (9° — em) = 0.

Hence = 0, n = 1 — (9*/em).
Substituting in equation () the corresponding values of & are

£=2U"D oy 4 (gfem).

m(m —c¢)’

Tt remains to prove that one of the two systems of solutions will satisfy the equa-
tion obtained from the second and third ratios of ().
This equation is

w6 — ) € dm (m — 0) 6 + ¢ (g — i)
+ n[— m*( + ¢°) € + 2mg* (m + ¢)] = 0.

Substituting for » from equation (n), this reduces to

me€® — & (em + ¢*) = 0.
Therefore
E=0, £=1+4 (¢*/em).
Hence the solutions
x = acm/(cm + ¢*),
y = bem/(em — g?),
2 = 2abePmf{(n® — ) (¢ — )},
satisfy all the equations.
Hence the surface () is an envelope.
(D.) It will now be verified that the values of b given by (181), and the equations
obtained by changing & into % and ¢, become equal in this case.
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‘The equation
o 0 0
b? o (wo — W?) + 20 &(uU — VW) 4 o (vw — V=0

is the only one that need be considered, because the others are identically satisfied.
In this case
w — W? = — 2wymz — m*?

wU — VW = myz {22y + (m — ¢) 2}

uw — V? = (— m? 4 2mec — ¢°) y*%* — 2may®z.

Hence if £, 9, 0 be any point on the binode locus,

aag (wp — W2) = — 2mén,
a%,(uU — VW) = 2mér?,
9 (vw — V?) = — 2mén’

Hence the equation for b is
— 2mén (b — n)* = 0.

Hence both values of b become equal to .
Art. 22.—If the two Conic Nodes are replaced by o single Uniplanar Node, and of

U = 0 be the equation of the Uniplanar Node Locus, then A contains Ut as a
JSactor.

It follows, as in Art. 19 (B), and Art. 21, that A and all its differential coefficients of
the second order vanish.

Next take the value of 93A/02® from (150).
The first three determinants vanish by (158).
To calculate the next set of terms, put in (177)

P=Usey =V T = Wea P= Um, Q = Vm, R= Wxx
Hence they are equal to
8 (0Pttes -+ 20BW o, + B 4 20V s + 26U+ w02) & (a0 — W)

0
= 6\u (uwv — W?).
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The last determinant by (178) is equal to

— 6\ é% (uwv —W?),
Hence 0®A/ox® = 0.

Next take the value of 0°A/0x*0y from (151).
The first three terms vanish by (158).
The next three terms by (177) are equal to

(Pt + 205W o + Pvse + 20V,0 4 26U, + 0,) a% (v — W?)
0
= 2\ 5 (v — W2),
The next three terms by (177) are equal to

2 (dPuyy + 200W,, 4 b,y + 20V, + 2va,@ + w,y) ;% (uwv — W?)

= 4d\uu 5—0 (v — W2).

249

The next three terms may be obtained from (179) by changing z into x, and,

therefore, » into . They are therefore equal to

0 0
— At (v — W?) — 2\ 5 (v — W2),
Hence d3A /0?0y = 0.
Next take 0°A/0x 0y oz from (152).

The first three determinants vanish by (158).
The next six are by (179)

0 0 0 5
= — 2pvu 5 (v — W?) — 2\ 5 (v — W?) — 2\uu 5 (uv — W2).
The next six are by (177) |
= (0®uyy + 2a00W,, + b,y + 20V, + 20U, + w,,) é% (w0 — W?)
= 2\pu a% (uv — W?),

Hence, the next six are
0
= Z,LLV'LL a—x (uv - W ),

MDCCCXCII.—A. 2 K
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and the next six are
0 ‘
= 2v\u 8—3}(“@ — W?),
Hence, 0°A/dx oy oz = 0.

Hence, by symmetry, all the third differential coefficients of A vanish.
Hence, A contains U* as a factor.

Example 138.—ZLocus of Uniplanar Nodes when the equation of the System of Surfaces
is of the Second Degree in the Parameters.

Let the surfaces be
(br — ay 4 2)* — 2 — 2mz (¢ — a) (y — b) = 0.

(A.) The Duscriminant.

It is
y? — Ly — mz (m — 1) yz
— Yy — mz x? (m + 1) az
(m — 1) yz (m + 1) xz 2 — 2% — 2mayz

= mz* 2wy + mz — m).

To show the origin of the factor 2%, the formation of the discriminant will be
examined.

The equations Df/Da = 0, Df /Db = 0 are, in this case

ay® — b (wy + mz) + (m — 1) yz = 0,
— a(xy + mz) + ba* 4 (m + 1) 2z = 0.
Therefore
@ _ b _ 1
—maz {2zy + (m+ 1)z}~ — myz {20y + (m—1)2} ~ — mz(Qwy + mz)”

Now, it will be shown presently that z = 0 is the uniplanar node locus. Hence,
a, b become indeterminate on the uniplanar node locus. But, removing the factor
— mz, which vanishes on this locus,

z 0\ ”
= a:<1 T 2y +m-;)’ b= y(l T 2uy + mz)

\

Hence, at any point, & 7, 0 on the uniplanar node locus, @ = & b = .
Again, substituting the above values of «, b in

(bx — ay + 2)* — 2% — 2mz (x — a) (y — b),
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the result 1s

~3
mz Z3

20y + mz -

If this be expanded in ascending powers of z, the lowest is the third power.
But the rationalising factor applied to form the discriminant, viz. — mz (2wy + mz)
contains the factor z. Hence, the factor z* is accounted for.
The discriminant is as before
mz* (2cy 4+ mz — m).

(B.) The Uniplanar Node Locus is z = 0.
Putz=a+ X, y=0+Y, 2= Z in the equation. It becomes

(X — aY + Z)® — 7% — 2mXYZ = 0.

Hence the new origin is a uniplanar node.
Hence z = 0 is the uniplanar node locus.

(C.) The Envelope Locus s 2xy + mz — m = 0.

The equation can be written

a*y? — 2ab (xy + mz) + 0*® + 20 (m — 1) yz + 20 (m + 1) az + p
=p —2* + 2° 4 2mayz.

Let p be determined as a function of @, y, z, so that the left-hand side of the
equation may break up into factors linear with regard to «, .

Then
mz

— 2 ~ o
p==z 2mayz Qwy + m2

It may then be verified that the equation can be written

p[{a+ jl=b ey +m)+ -1y}

Y1 2 (Q2ay + mz—m)

"o (o b - :
—y4z( acy+'mz){ —y+ } - 2uy + mz

2wy + mz

Hence it may be concluded that 2zy 4 mz — m = 0 will touch the surface where
both the factors of the left-hand side vanish, #.e., where -

o -|-§1§[— b(xy + mz) + (m — 1) yz] = 0,
ki —

Qwy + mz
2K 2

b—y+

s
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1.e., where
@ = w<1 + 27?‘) =Y ( s )

Hence the points of contact are determined by

20y + mz — m = 0,
cc:x(l—]—ri),

2
b:y(l—-;),

(#* — m?) (z — 1) — 2abm = 0.

Hence

Hence when «, b are given, there are three values of z, and three corresponding
values of x, and three corresponding values of y. Hence each surface touches the
envelope at three points. But each point on the envelope is the point of contact
of only one surface of the system, since when the coordinates x, y, z of the point of
contact are given, the values of a, b, the parameters of the surface touching the
envelope there, are determined by the simple equations

=u(l +2/m), b=y(l—z/m).

The result may be verified thus :-—
The values of @, y, z satisfying the equations

a=ua(l4zm), b=y(l—zm), (*=—m)(x—1)-—2bn=0. . (a),

will satisfy at the same time

(b — ay + 2P —2° — 2mz (x —a) (y — b) =0 @)
2xy -+ mz — m =0 S ’
and
2(670—ag/+z)b—2mz(y—b)_—2(Zm--ay+s)a~2mz(x——a)
2y - 2
2 (e —ay +2) — 322 — 2m(x — —b)
_ (bx — ay + 2) 2 m(z — ) (y )

m

If =, y, 2 satisfy («), then

2 (" + 2abm — m?)

b —ay d+e="-—453"53" >
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and substituting in the first of equations (B), after making some reductions, the
result is

= 2)2 ————— (2" + 20bm — m?) [2abm — (* — m?) (z — 1)] =0,

which is satisfied by (o).

Hence the first of equations (B) is satisfied by the values of @, ¥, z given by (a).
Again substituting for @, v in terms of z from (a) in (y) the ratios become equal to

[2*(— m — 1) — m*2® + (m* — 2abm) 2] [ m (m + 2)
= [2*(—m + 1) + m*%? — (m® — 2abm)z] [ m (m — z)
= [32* — 22° + 2% (2mab — 3m?) 4 z (2m® — 4abm)] [ m (m? — 2?).

Hence it is necessary to show that

[22(— m — 1) — m*% + (m? — 2abm)] (m — 2)
= [2(—m + 1) + m% — (m* — 2abm)] (m + 2)
= 328 — 2% -+ 2 (2mab — 3m?) + (2m® — 4abm) . . . . (9).

Equatihg the first and second quantities in (8) it is necessary to prdve that

23— 22 — m*% 4+ m® — 2abm = 0,
which holds by ().
Equating the second and third quantities in (3) and removing the factor (m + 2),
the same result is obtained.
Hence the values of @, ¥, z given in («) satisfy all the equations (8), (y).

Art. 28.—If the parameters of one of the two Surfuces having Conic Nodes become
infinite, and if C = 0 be the equation of the Conic Node Locus, A contains C* as
o factor.

The conditions that one value of @ and one value of b satisfying the parametric
quadratics (180) and (181) should be infinite are that
9 (v — W?) =0 2 (wv — W?) =0 o (v — W?2) =0
o -7 oy - %

In this case the values of A and 8A/ax as given by (146) and (147), both vanish.
Hence A contains C* as a factor.

Example 14.— Locus of one Conic Node.
Let the surfaces be
[o(x— o)+ B(y — b)]2+ 29z (2 — a) + 2hz (y — b) + k2> = 0.
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(A.) The Duscriminant.
It reduces to
o afl gz
aB B Iz | = — (ha — gB)*~
| gz hz k2
(B.) The Conic Node Locus is z = 0.
In this case equations (143), (161), (162), (163) are equivalent to the three
equations
o (2 — a) + aB (y — D) + g2 = 0,
af (x — a) + B (y — b) +hz =0,
gx—a)+ h(y—10) + k=0,

the only solutions of which (unless g8 — 7o = 0) arc
r=a, y=10, z=0.
Hence there is now only one system of values of the parameters satisfying (143),
(161), (162), (163).

The same value of the parameter b would be obtained from the equation (181)
which becomes in this case, after changing x into ¢,

J, ¢ 0 9
20 5, (WU — VW) + ,:; (uw — V?) = 0.
Now
wU — VW = (98 — ha) az,
ww — V2 == 2 (ha — gB) ayz + (ko — ¢°) 2% ;
therefore,

5’—7(uU — VW) = (98 — ha) «,
gz(uw — V) =2(ha —gB)ay + 2 (ko — ¢*) 2
On the conic node locus z = 0.
Therefore the equation for b is
20 (98 — ha) o + 2 (ha — gB) ay = 0.

Therefore
b =u.

There is only one conic node, since ur — W? = 0, and, therefore, equation (181)
reduces to a simple equation for 0.
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Art. 24.—If the parameters of both of the Surfaces having Conic Nodes become
infinite, and E = 0 be the equation of the Envelope Locus, then A contains E3
as a factor.

In this case it is necessary that both roots of the parametric quadratics (180)
and (181) should become infinite. ‘
Hence the first differential coefficients of

w — W2, Vo—UW, Uu-— VW,

with regard to any of the variables, must vanish on the envelope locus.
[It may be noted that if

0 0 - 0
o, (w0 — W?) =0, and % (Vo — UW) =0, then 5, (U — VW) =o0.
For
%(uv - W) =uv 4+ uv, —2WW, =0

. (182).
= (Vo — UW)=V.0 + Vo, — U.W —UW, = 0

Multiplying these equations by V, u respectively, and subtracting
u, Y0 4+ U Wy — w0V, — W, (2WV — Uy) =0;

therefore, using (158), after dividing by W,

u,U+Uu— WV, - W, V=0;
therefore

2 (Uu— VW) =0]

Now A, 0A/ox both vanish by (158).

Next consider 0°A/0x? as given by (148).
The first three determinants vanish by (158).
The fourth and fifth determinants

o
“0x
= 0 by the above conditions.

=2 {V (WU — Vo) + Ux—a%(vw — Uu) + 'wxé%(wv - Wz)}

The sixth determinant is

|, W, V.,
21 W, », U,
V U w
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Substituting in it for u,, v, the values which can be obtained from

0 0 |
= (Vo —UW)=0, and 5 (Uu —VW)=0,

it becomes

| WV.+ VW, — U, UW, Uv,
2 | VW, UW4+UW,—Vae VU,
v
v m v W v A
U u U
WV, 4+ VW, — U, UW, uv,
= % ! VW:/; UW./; ”I—' UoW - V,J'U VU;:; ’
’ U W Vv i
WV, 4+ VW, UW.,+ WU, UV, + VU,
)
== VW, UW, 4+ WU, —Vae VU,
u W A%
WV, 2V, uv.,
- % VW, UW,+ WU, — Vs VU,
u W A%
_ w ) U
— fg VYW, UW,+ WU,—Vae VU,
0 W Vv

=0 by (158).

Next take 0*°A/0x oy from (149).

The first three determinants vanish by (158).

The fifth and seventh determinants

d D 5 ,
=V, 3‘y (UW — Vo) 4+ U, 8/ (VW — Uu) + w,,,aiy(uv — W2) = 0.

The eighth and ninth determinants

0

=Via

(UW — Vo) + U, 2 (VW = Un) + 10, (wr — W?) = 0.
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The fourth and sixth determinants are

u, W, V, | u, W, V, |
W, v, U, + | W, v, U, |
i Vv U w | Vv U w |
WV, + VW, —uU, UW, Uv,
_ 1| vw, UW+UW,—Vw VU,
—uv .
V. Vw Vy
w w U
WV, + VW, —2U, UW, Uv,
1| VW, UW 4+ UW,—Vp VU,
oV |y v v
~u W WV
U w U
WV, + VW, UW,+ WU, Uv,+ VU, |
=5 | VW, UW 4+ UW, — Vo VU,
w W | v l
WV, 4+ VW, UW,+ WU, UV, 4+ VU,
+ 5 | VW, U,W + UW, =V, VU,
L u w A%
Hence the coefficient of U, is
oow i WV, 4+ VW, UW,+WU, UV, VU,
} | 1 i
L W% vV u w AY i
1w V| L1 uw, UV,
T U UW, =V o f Ulw v

[and

P
_—

v (Vme b VUVV;,,« + UV\VV.& - UWV#) = 0.

MDECCXCIL —- A, 2

o~
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The coefficient of V, is

) W 0 U | WV, + VW, UW,4+ WU, UV,+VU,!
., . 1
Go| VW UW +UW, — Vo VU, | + 5. |0 —_ 0
% W A% u A\ Y
w0 U
= | VW, UWATW,—Vo VU, | = == (VWY A4 VW, —uUV.—uVU,)
0 W 0

W T
= — 5, (WVU. = UVW,) — & (V*W, — uVU,)
= = (U, (i — W)V + W, (UW — V) V} =o.

The coefficient of W, is

vV U 0
612; VW, U.W4+UW, -V VU, |
u w Vo
WY A VW, UW. WU, UV, 4 VUL |
o |V U 0 |
u w Y |

V2 , Vv -
= @ (UJ,W — Vﬂ]) —I— *ﬁ“% (U WV,,; = VWUx)
= o (V. (UW — Vo)) = 0.

Hence ¢°A/ox 0y = 0.
Hence all the differential coefficients of the second order vanish.
Hence A contains E? as a factor.

Example 15.—Envelope Locus, the parameters of both the Surfaces having Conic
Nodes being wnfinite.
Let the surfaces be
2a® 4z + (ax+ b+ y) = 0.
(A.) The Discriminant.
This is

W S 1)

|
1
{
|
|

x 1y

Yy y vtz
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(B.) The Envelope Locus is z = 0.
The tangent plane at & 7, { is

(X — &) 20 (a€+b+n) + (Y —5)2(af+b+7)+(Z—0) (2 + 1) = 0.

Hence at the point &, », {, where

af+b+9n=0 (=0,
the tangent plane is Z = 0.
Hence the factor 2% is accounted for.

(C.) The Parameters of both Sunfaces hawing Conic Nodes are infinite.
In this case

u=2+2, v=1L, w=9y+z2 U=y, V=uy, W=ua.

Hence the equations

0 0 0
a5 (uv — W2) + 20!/5;(‘7'0 —UwW) + g(vw —U?) =0,
and

022 (un — W2) 4 20 & (Un = VW) 4 2 (0 — V2) = 0,

become, when 2 = 0,
(0)a* 4+ 0(a) +1=0,
(0)0*> + 0 (b) + «* = 0.

Hence both roots are infinite.
If the differential coefficients in the parametric quadratics had been taken with
regard to @ or v, the equations would have been wholly indeterminate.

Art. 25.—If the parameters of both of the Surfaces having Contc Nodes become
indeterminate, then at every point of the Locus of Ultimate Intersections there are
an mfinite number of Biplanar Nodes ; each Surface of the system has a Binodal
Line lying on the Locus of Ultimate Intersections, and if the locus of these
Binodal Lines be B = 0, then A contains B* as o _factor.

In order that the parametric quadratics may become wholly indeterminate, the
first differential coefficients, with regard to each of the three variables, of uv — W2,
Uu— VW, Vo—TUW, ww—TU? wuw— V? must vanish. These involve the
vanishing of' the first differential coefficients of UV — Wuw.

It will be shown, first of all, that the ratios (164) are in this case equivalent only

212
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to the equation (143). [The same holds good in the previous article, but the condi-
tion (161) is not satisfied there. ]
For consider the ratios

U0t + Wb+ V,: W + 0,04+ U, =u:W.
Therefore

a(Wu, — uW,)+b(WW, — uv,) + (WV, — «U,) = 0.

This will be the same equation as (143) if

Wy, —uW,  WW, — up, _ WV, —U,

% w - AY
Hence if
u,W? + v?v, — 20WW, = 0,
and
VWW, — Vuv, — WV, 4+ WuU, = 0,
e, if
uvt, + v, — 2uW W, =0,
TuW, — Vuv, — uvV, + WulU, = 0,
t.e., if

a%(uv — W?) =0,

- _
a (UW — Vo) =0,

which are satisfied.

Similarly the other ratios in (164) hold. Hence if any point be taken on the curve
in which the surface (143) intersects the locus of ultimate intersections, that point is
a binode on the surface (142). Hence the surface (142) has a binodal line situated
on the locus of ultimate intersections. Hence each surface of the system has a
binodal line situated on the locus of ultimate intersections.

Tt remains to show that if B = 0 be the locus of these binodal lines then A contains
B* as a factor.

The proof in the last article will hold as far as the second differential coefficients of
A are concerned.

Consider, therefore, the value of 0°A/0x® given in (150).

The first three terms vanish by (158).

The next three are equal to three times

-

¢

0 . 0
Uz 50 (vw — U?) + 2W,, % (UV — Wuw) + v, 5

0

:cxa_x

(uw — V?)
+ 2V 2 (WU = Vo) 4 20 2 (WY = U) 410 5. (10— W)

= 0.
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The last determinant is by (178)

= — 6N\ =—

5 (v — W?) ==

Therefore 0°A/0x® = 0.

Next take 0°A/0x? 0y as given in (151).
The first three terms vanish by (158).
The next three

= umaé(vw — U?) + ZW’”B% (UV — Wuw) + Va5 2 (uw —V?)

+ 2V O WV = Un) + w. aa (110 — W?)

= 0.

O (WU — Vo) + 2U

Tta T a

The next three

= 2u, 0 vw — U?) 4+ 4W,, UV — Wuw) + 2v,, ~ 0 uw — V2
Ry "’8 Y O

0 0

+ 4V, (WU = Vo) + 4U,, 2 (WY — Un) + 2, > (w0 — W)

= 0.
The next three may be calculated by means of (179) by putting z = @, and there-

fore v =\
Hence they are equal to

aa (v — W?) — 2\ % D% (v — W?) = 0.

— 4 \uu
Hence 0%A/0x? 0y = 0.

Next take 0°A/ox 0y 0z as given in (152).
The first three terms vanish by (158).
The next six terms by (179)

= — 2uvu é% (wv — W?) — 2vhu§l/ (uv — W?) — 2\uu gz (uv — W?)
= (.

The next six terms
0 <
_u,q,a (vw — U?) + 2 nya (UV = Ww) + vy 5 (vw — V?)

+ 2V, L (WU = Vo) + 20, 2 (WV = Un) 4 1, & (o = W)

= 0.
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The next six terms being obtainable from these last six by interchanging « and #
vanish.

The remaining six vanish in like manner.

Hence all the third differential coefficients of A vanish.

Hence A contains B as a factor.

Example 16. —Locus of Binodal Lines.

Let the surfaces be
2iat+ d(x, y, 2)} — (a4 b+ y) = 0.

(A.) The Discriminant.

This is
P - —ay i
—_ -1 —v
—xy  —y —P 22y, %) |
= — 2% (z, v, 2).

(B.) The Locus of Binodal Lines is z = 0.

For let & =, { be any point on both the loci 2 =0, ax + b+ y = 0.
Thenput e =€+ X, y=n4+ Y, 2=+ Z, so that =0, a§+b+n=0
Therefore

2 (ot + ¢ (6,0, 0 + X4V 20 ) = (@ b aX 4 Y =

Hence the lowest terms in X, Y, Z are

Z2{a (& m O} — (@X +Y) =

These break up into two factors.

Hence the point £, 7, { is a binode on the surface,

Hence the straight line z = 0, a -+ b + y = 0 is a binodal line on the surface.
And z = 0 is the locus of binodal lines.

Hence the factor #* of the discriminant is accounted for

(C.) The Locus ¢ (x, y, z) = 0 is connected with a Curve Locus, not o Surface
Locus, of Ult:mate Intersections.
For the fundaumental equations are in this case

2l 4+ P (a, y, 2)} — (ax + b+ y) =
22% — 2x (ax + b+ y) =0,
2 (ax + b4 y)=0.
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Hence, if ¢ (z, y, 2) = 0, then, in order that the above equations may be satisfied,
ar 4+ b+ y =0,
z =0,

The locus of these points is the curve
2=0, ¢(x, 9y, 2)=0.

This belongs to one of the exceptional cases enumerated in the Section VI. of this
paper.

Example 17.—Thes example shows the difference between the cases when the equation
15 of the Second Degree in the parameters and those in which «t is of o Higher
Degree, so far as reqards Binode and Unode Loci,

Let the surfaces be

a(w—a) + 38 (x — a)z + ¢z* 4+ 3d (y — b)* + e = 0.

(A.) The Discriminant.
It is the same as that of the equation

aX3 4 3B2X%Z + 3dY?Z + (c2® + e2*) 23 = 0.
Therefore
3 = — (%,
T = 4d%? {a® (e + cz) + 2B%}.
Therefore :

A = 16d%* {a* (¢ + cz)* + 4a7B% (¢ + ¢2) .

(B.) The Locus of Biplanar Nodes s z = (.
For puttingz =a 4+ X, y=0+Y, 2=2, the equation becomes
aX3 4 38X27Z 4 73 + 3dY? 4 eZ2 = 0,
The edge of the biplanes is given by ¥ =0, Z =0,
Hence the edge of the biplanes lies in the biplanar node locus z = 0, and, therefore,

satisfies the condition for contact with the biplanar node locus,
Hence the factor z* is accounted for (Art. 15).

(C.) If e = 0, the Locus of Uniplanar Nodes is z = 0.

In this case, 7
A= 16d° (a'c* 4+ 4a’Bc) 28,

Hence the factor 2% is accounted for (Art. 12),
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(D) If o = 0, A appears to vanish, but then the equation of the Surfaces,
8B(x — aYz + ¢z + 3d (y — 0) + 2> = 0,

15 of the Second Degree in the parameters, and if the Discriminant be formed vt does
not really vanish.
For the diseriminant required is not that of the cubic

3Bz X7 + BdNZ + (c2® + e2?) 27,
but of the quadric
3B2X2 4 3dY? + (¢ + ) 22
It is therefore

9Bdz* (¢z + ¢).

(E.) The Locus of Biplanar Nodes us now 2z = 0, the edge of the Biplanar Node
being in the Biplunar Node Locus. _

The edge satisfies the condition for contact with the biplanar node locus. Hence
the factor 2* is accounted for (Art. 21).

(F.) If e = 0, the Locus of Uniplanar Nodes vs z = 0.

In this case the discriminant is 9Bcdz. Hence the factor z* is accounted for
(Art. 22),

SectioN V. (Arts. 26-29).—Tar INterszcrions or CONSECUTIVE SURFACES.

It has been shown that when the analytical condition (76) is satistied which expresses
that the fundamental equations are satisfied by two coinciding systems of values, the
number of factors in the discriminant corresponding to conic node, biplanar node, and
uniplanar node loci, is less when the degree of the equation in the parameters is the
second than when it is of a higher degree.

It has also been shown that, when (76) holds and the degree in the parameters is
the second, each surface of the system, its consecutive surfaces, and the locus of
ultimate intersections, intersect in a common curve,

It 1s desirable, therefore, to examine the nature of the intersections of consecutive
surfaces in all other cases.

Art. 26.—T7o prove that the Suzfaces represented by the three fundamental equations
wntersect in one point on the Envelope Locus, unless the Envelope Locus have
stationary contact with each Surface of the System, and then there are two pownts
of wntersection. l '

(A.) First consider the case of an ordinary envelope.
Let & n, { be a point of intersection of the surfaces
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f(z, vy, 2,0, b)=0,

Let €+ X, 9+ Y, { 4+ Z be a neighbouring point on the same three surfaces, so
that the values of a, b are the same.
Therefore

SHEIX+MIY+Z+L{EEX+. ..}
+IEEEXP ... +...=0 (183),

[]+[&a]X+[na]Y+[La]lZ+L{E6Ea]X+. .. 4+...=0 (184),
BI+[EBIX+MBIY+[LBIZ4+5{6EEBIX 4. .. 5 4... =0 (185)

Hence because /=0, [a] = 0, [B] = 0, the terms of lowest order in X, Y, Z in
(188), (184), (185) are of the first degree in each case. Hence there is one solution
X =0,Y=0,Z=0. Hence there is one intersection at this point.

(B.) Next consider the case where the contact is stationary.
The equation of the tangent plane to the envelope locus is

X =&+ =+ E—0=0 . . . . (136)

But also from (28) and (29)* by means of (76) the équation of the tangent plane
can also be shown to be

[, B] {(X — &) [, €] + (Y = 1) [ 7] + (Z — O) [, ]}
— [ a] (X = &)[BE+ (Y —n)[Bnl+(Z—-)[B i =0 (187)

Hence
1 1
5 (L B[, €] = [ &) [8, €13 = o= ([ B[ ] — [, ][, n]}

= 5y (o B[ {1 = [, 4 B, C13

Hence the lowest terms in (183), (184), (185) are not independent of each other ;
and if the three fractions last written be each = p, it is possible by multiplying (183)

* Hquations (28) and (29) are satisfied at any point of an envelope locus. Equations (16), (17),
(18) are not.

MDCCCXCIL.—A., 2 M
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by u, (184) by — [, 8], (185) by [«, ], and adding, to form a new equation in which
the lowest terms in X, Y, Z are of the second degree.

Hence the equations (183)~(185) are equivalent to three others in which the lowest
terms in X, Y, Z are of degrees 2, 1, 1 respectively. Ilence there are two sets of zero
values of X, Y, Z. Hence there are two intersections. A

Art. 27.—T0 prove that the Surfaces represented by the three fundamental equations
wntersect in two points on the Conic Node Locus, unless it be also an Envelope Locus,
and then there are three points of intersection.

(A.) In the case of the Conic Node Locus [£] = 0, [y] =0, [{]=0.

Hence the lowest terms in X, Y, Z in (183) are of the second degree, in (184) and
(185) of the first degree.

Hence there are two intersections.

(B.) In the case where the conic node locus is also an envelope, it will be shown
that the values of X, Y, Z, which make

[o, {1 X + [, 9] Y + [, L] Z=0 . . . . . . (188),

B E1X 4 (B0 Y +[BUZ=0. . . . . . (189),

also make

641X+ ] Y+ [ 2+ 2 [, [YZ + 2[4 E]ZX + 2[69] XY =0 (190),

so that the lowest terms in the equations, by which (183)~(185) may be replaced,
are of degree 3, 1, 1 respectively, and hence there are three intersections.
Now the cone (190) touches the tangent plane to the conic node locus, viz. :—

[o, B] {[e, €] X + [, ] ¥ + @, {] 43
— [0, ] {[B, €1 X+ B Y +[B L Z}=0. . . . . (191),
this being the form for the tangent plane to the conic node locus which can be

deduced from (28), (29), and (76).
Hence, to find the line of contact, whose equations are

X/ X' =YY = Z/Z,
the origin of co-ordinates being taken at the singular point,

(&X' +[EY +[E04Y ] ([0 Bl €] — [» @] [B, €]}
= (&)X + ] Y + [0, 2%/ {[e Bl[e 9] — [#a] [Bm]}
= {[§ X 4+ [0, Y + [LOZY/ {0 Blx O — [# ] [B, L]} (192):
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It will now be verified that

X/ {118, &] = [ L [B. ]} = Y'/i[e, [ [B, €] — [ €1[8, {13
= Z/{[e E1[B, ] — [= ] [B, €13

For substituting these values in the first and second ratios of (192), they become

D[[€][7).[¢]] /D [[«][8]]
D&, 2,81/ D[E, «]

__ D€L 1. (611 /D[] [8]] (193) |
D[n,a,8]1/D[n, ] ~ * = = = 0 Ak

Now, since the equations (16), (17), (18), (28), (29), are equivalent to three
equations only, it follows that

D[[E] [ [EL 1] _
D[E,"];“’IB] ’

which may be written

D D )
(o, B] L[], [n]. [€1] — [a, o] D [[£], [»}, [€]]

D[ &, 7, «] DL E,n, B]
D , [7], D
+ [a’ 7]] 5 %[g], [Z], [Ig]} [ ég] DE[i] ['Z], [g]% 0o . . . (194)

Also from (16), (17), (18), (28), (29) may be deduced

D€L )€} [81] _
D[E;")’“’B] ’

which may be written

D[] []. (€] — [, B] D[[£].[).[€]]

[BB:'D[E 7, “] D[E>777B]
D R D 7],
i DB DB

Multiplying (194) by [«, B8], (195) by [a, a], and subtracting,

D {[£1, [, ) ,
D——{—%]’————T],[ﬁ%j {le,n] [ B] — (B, ] [e, o]}

= gL Iy )10, ] [8, €] ]}
which proves (193).
This proves that the first ratio of (192) is equal to the second. By symmetry the
first ratio is also equal to the third.
Hence the line of contact is the intersection of the planes
2 M 2
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[ E]X 4[] Y + [, (] Z=0 -
(B, E1X +[B]Y +[B.{1Z=0] '

Hence the values of X, Y, Z which satisfy (188) and (189) also satisfy (190), which
was to be proved.

Tt may be noticed that the equations (196) are those of the tangent planes to the
surfaces Df/Da = 0, Df/DB = 0 at & 5, &

Art. 28.—T0 prove that the Surfaces represented by the three fundamental equations
wntersect in three points on the Biplanar Node Locus, unless the Edge of the Biplanar
Node always touch the Biplanar Node Locus, and then there are four points of
wntersection.

(A.) Tn this case
(66X + ] Y+ [LOZ + 20, {YZ + 2[{, €] ZX + 2§, 9] XY
breaks up into the factors
(& EL{LE I X + [n0] Y + [§ 1] Z} |
~{[&n] £/ ([EnF — (€ E][nn))} (& E1X + [E9] Y +[£ 02}

Now, since equations (16), (17), (18), (28), (29) are equivalent to only two
independent equations,

[En] X+ ] Y +[{n]Z and [£E]1X+[E9]Y +[£Z
are linear functions of

[éa]X +[n,a]Y +[{a]Z and [£B8]X + [7,8]Y +[L A Z

Hence the equations (183)—(185) may be reduced to others in which the degrees of
the lowest terms in X, Y, Z are 3, 1, 1 respectively. Hence there are three intersec-

tions,
(B.) If, however, the edge of the binode always touches the binode locus, then by

(126) it follows that
(6] X + [, 2] Y + [{ «]Z is a multiple of [£, 8] X + [, 8] Y +[{ B] Z.

In this case
En] X4+ ] Y +[n]Z and [§E X+ [Eq]Y +[£ (%

are not, as in the last case, linear functions of

(6] X+ [na]Y +[{e]Z and [£B8]1X +[0,B8]Y +[A]Z,
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for,if so, [€,&] X4-[€, 7] Y+ [ {] Z would be a multiple of [¢,9] X+ [9,7]Y + [, {]Z,
and the biplanes would coincide, and there would be a uniplanar node.

Consequently, in this case the equations can be reduced as follows :—

The lowest terms in (183) to be of the second degree.

The lowest terms in (184) to be of the first degree.

The lowest terms in (185) by means of (184) to be of the second degree.

Hence the degrees are respectively 2, 1, 2.

Hence there are four intersections.

Art. 29.—T0 prove that the Surfuces represented by the three fundamental equations
intersect tn six points on the Uniplanar Node Locus.

In this case

[EE1X+ ] Y+ (L2 + 20 [YZ + 2[4 12X + 2[€, 7] XY

is a perfect square, and is proportional to the square of [§, §] X + [&7] Y + [£ (] Z;
and this by means of the ratios (48) is proportional to [§, a] X 4 [, 2] Y 4 [{, «] Z
and also to [§ B]1 X + [, B1Y + [{ Bl Z.

Hence the lowest terms in X, Y, Z may be reduced as follows :—

The lowest terms in (188) to be of the third degree; the lowest terms in (184) to
be of the first degree; and the lowest terms in (185) by means of (184) to be of the
second degree.

Hence the degrees are 3, 1, 2 respectively.

Hence there are six intersections.

Secrion VI (Art. 80).—ExcEPTIONAL CAsES.
Art. 30.

It remains to notice the exceptional cases in which the locus of ultimate intersec-
tions is not a surface.

An example is given of each, but the theory is not developed.

The general case which has been considered in this paper is that in which the
fundamental equations are satisfied by values of the coordinates which are functions
of both parameters.

The exceptional cases are :—

(I.) When the fundamental equations are satisfied by values of the coordinates
which are functions of one parameter.

(I1.) When the fundamental equations are satisfied by values of the coordinates
which are functions of netther parameter, i.e., are independent of the parameters.
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(IT1.) When the fundamental equations cannot be satisfied by any values of the
coordinates which make the discriminant or a factor of it vanish, the values of the
parameters being finite.

(IV.) When the three fundamental equations, which contain the five quantities
x, Yy, 2, o, b are equivalent to two relations only between them.

(V.) When the three fundamental equations, which contain the five quantities
x, Y, z, o, b are equivalent to one relation only between them.

I. The Fundamental Equations are satisfied by values of the coordinates which are
Juncteons of one parameter only.

In this case, eliminating the parameter, two relations between the coordinates are
obtained. Hence the locus of ultimate intersections is a curve.

Example 18.
Let the surfaces be

a’e? — 20bxy + b — 20 (w4 1) — 20y +2=0 . . . (197).
(A.) The Diseriminant. |
It is A
x? —xy —x—1
—ay ¥y =y
—rx—=1 —y 2
= — y* (22 + 1)%

(B.) The coordinates of each point on the locus of ultimate intersections must
satisty (197) and

?— by — (x4 1) =0 :
o wy — (¢ 4 1) (198)
— axy + by — y =0
From (197) and (198) '
—a(x+1)—~by4+2=0 . . . . . . . (199)
(i.) Now a solution of the second of equations (198) is
y=0 e e e e e e e (200).
Substituting in the first of equations (198) and in (199)
ar? — (x4+1)=0 . . . . . . . . (201),

—a(@+1)+2=0 . . . . . . . . (2092)
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From (201) and (202)
et — (e 1P=0 . . . . . . . . (203).

A part of the locus of ultimate intersections is, therefore, given by (200) and (2083).
In this case z, ¥, z may be considered to be functions of @ only. It will be noticed
that if (200) be satisfied, A = 0. But A = 0 does not suffice to determine this part
of the locus of ultimate intersections.

- (it.) Next take the other solution of the second of equations (198), viz. :—

—ar+by—1=0 . . . . . . . . (204)

Combining this with the first of equations (198),

2e4+1=0. . . . . . . . . . (205)
Hence, by (204),
y=(2—a)20 . . . . . . . . . (206).
Therefore, by (199),
r=1. . . . . . . . . . . (207)

Hence another portion of the locus of ultimate intersections is given by (205) and
(207).

In this case the coordinates of any point on the locus of ultimate intersections may
be regarded as functions of the single parameter (2 — «)/20.

It will be noticed that if (205) be satisfied, A = 0; but A = 0 is not sufficient to
determine this part of the locus of ultimate intersections.

II. The Fundamental Equations are satisfied by values of the coordinates which
are independent of the parameters.

In this case all the surfaces of the system pass through a finite number of fixed
points, or a fixed curve.
Example 19..

Let the surfaces be

‘l’(x' Y, z) + a¢ (z, ¥, z) + bx (2, 9, z) = 0.

(A.) To find the locus of ultimate intersections, it is necessary to satisfy at the

same time the above, and
¢ (90, Y, 2) = 0,

x (x, v, z) = 0.
Hence it is necessary to satisfy

V(@ y,2)=0, ¢(=y2)=0 x(ryz)=0
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The locus is, therefore, generally a finite number of points.

The values of x, ¥, z are independent of the parameters.

(B.) If two of the three expressions v, ¢, X, say ¥, ¢, have a common factor 6, then
the curve 6 = 0, y = 0 is a part of the locus of ultimate intersections.

(C.) If the equation of the system of surfaces be transformed to plane coordinates,
then a point has an equation, and the locus of ultimate intersections would have
an equation, which could be determined as a factor of the discriminant.

ITL. The Fundamental Equations cannot be satisfied by any values of the coordinates
which make the Discriminant vanish, the parameters being finite.

Example 20.
Let the surfaces be the spheres

(z+c) (@ + ) — (c+ d) {200 4+ 20y — 2® — 4 — (2 — ¢) (2 — d)} =0,

where ¢, d are fixed constants; @, b are the parameters.
They all touch the plane z = d, and the sphere #? + y* 4+ 22 = ¢

(A.) The Discriminant.
It is
2+ ¢ 0 —(c+d)w
0 z4+c —(c+d)y
—H Do —t+dy (c+d @ +g+ ) —d)

=(c+d)yz—=d)(@P@+y*+ 2 —)(z+c)

(B.) The Plame z — d = 0 is a part of the Envelope.

(C.) The Sphere a® + y* 4 2° — ¢ = 0 is o part of the Envelope.

(D.) The remaining factor z + ¢ requires explanation. It is on account of this
factor that this example is introduced.

If 2z 4 ¢ = 0, the left-hand side of the equation of the system of surfaces, which is
of the second degree in a, b breaks up into two factors, one of the first degree in a, b,
the other of degree zero.

But the fundamental equations being equivalent to

a(z+c) — z(c 4 d) =0,
b(z+¢) —y(c+d) =0,
—a(ct+d)yx —blc+d)yy+(c+d)[2*+1*+ (z—¢c)(z—d)]=0,

cannot be simultaneously satisfied by finite values of @, b when z + ¢ = 0.
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For ifz 4+ ¢ = 0 and a, b be finite, the equations are equivalent to

x=0,y=0, 2(c+d)y?=0,
which equations cannot be satisfied.
Hence the values of ¢, b are infinite.

IV. The Fundamental Equations are equivalent to only two relations between the
coordinates and parameters.

In such a case the discriminant must vanish identically.

Example 21.
Let the surfaces be
a(x— a)P+38(y — b)?=0,

where «, B8 are fixed constants ; a, b the arbitrary parameters.
The other fundamental equations are

3a (x — a)® =0,

68 (y — b) = 0.

Hence the discriminant vanishes identically.
It may be noticed that in this case each surface of the system has a unodal line.
Hence the singularity is of a higher order than when each surface has a single unode.

V. The Fundamental Equations are equivalent to only one relation between the
coordinates and parameters.

In such a case the discriminant must vanish identically.
Analytically
I:f(w’ y’ z’ C(/’ b)]2 = O

is an example,
But the left-hand side is resoluble.

MDCCCXCII.—A 2 N
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